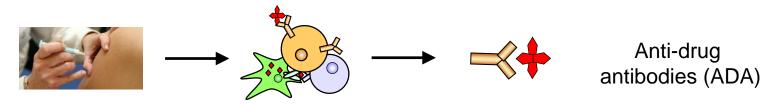


Institute of Biology and Technologies Service of molecular engineering of proteins Saclay, France

Immunogénicité des protéines thérapeutiques : impact et anticipation


B. Maillere, PhD

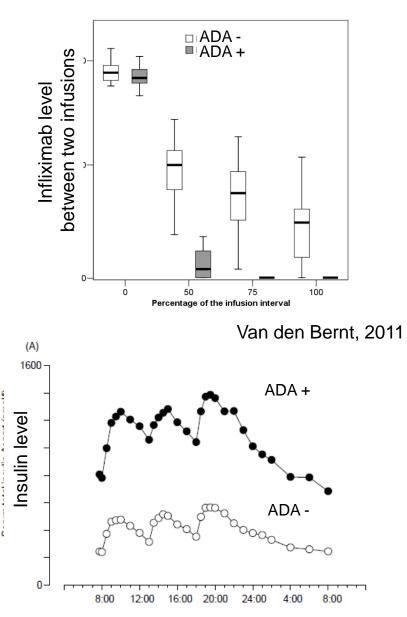
Contact: <u>bernard.maillere@cea.fr</u>

Risk of immunogenicity of therapeutic proteins

Immunogenicity: capacity to elicit a specific immune response

- No effect
- PK alteration : clearing or sustaining antibodies
- Resistance to the treatment : Neutralizing antibodies
 FVIII, Anti-TNFα, IFNβ

Safety issues


- Autoimmune symptoms (endogenous counterpart) Epo
- Allergic symptoms Cetuximab Infliximab
- Cytokine storm TGN1412

PK alteration

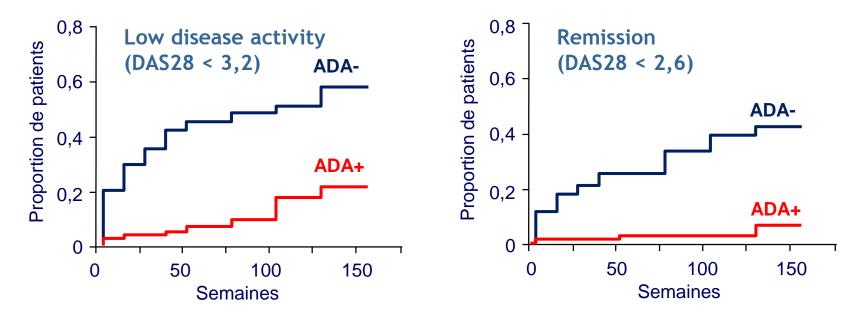
• Clearing antibodies

Examples: Therapeutic antibodies

Formation of large multivalent complexes, Fast clearance

Sustaining antibodies

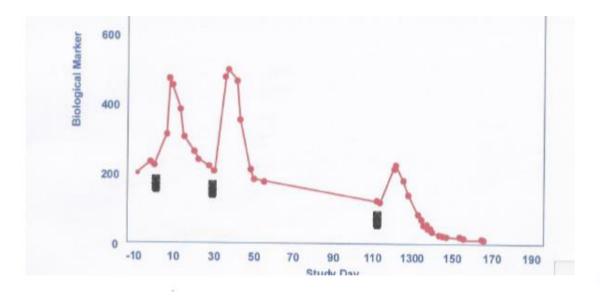
Examples: Insulin, IL-2, IL-3, IL-7


Small monovalent complexes Low clearance

Chen, 2005

Resistance to the treatment

 Progressive loss of the therapeutic efficacy Neutralizing antibodies Examples: anti-TNFα (RA), IFNα (HCV), IFNβ (MS), FVIII (Haemophilia)


Resistance to adalimumab treatment in RA patients

Bartfelds JAMA, 2011

Autoimmune symptoms

- Antibodies induced by the recombinant protein neutralize the endogenous form Examples: Thrombopoietin and Erythropoietin (EPO)
- Pure Red Cell Aplasia (PRCA) : Deficiency in mature erythroid progenitors, Rare event
 Can result from antibody response to injected recombinant EPO
- In the late 90s, sudden increase in cases of PRCA Changes in the formulation and injection mode Due to anti-Epo neutralizing antibodies

Allergic symptoms

 Allergic reactions mediated by specific IgE induced by repeated injections of therapeutic proteins

Acute and delayed hypersensitivity reactions to infliximab and adalimumab in a patient with Crohn's disease

```
Casper Steenholdt<sup>a</sup>,*, Morten Svenson<sup>b</sup>, Klaus Bendtzen<sup>b, c</sup>,
Ole Østergaard Thomsen<sup>a</sup>, Jørn Brynskov<sup>a</sup>, Mark Andrew Ainsworth<sup>a</sup>
```

```
Steenhold et al, 2012
```

- Allergic reactions mediated by specific IgE pre-existing before injection of therapeutic proteins
 - ✓ Crossreactive antibodies elicited by foreign antigens
 - ✓ Anaphylactic shock (IgE mediated)

```
Cetuximab-Induced Anaphylaxis and IgE Specific for Galactose-\alpha-1,3-Galactose
```

Cheung, NEJM, 2008

Pre-existing antibodies to Cetuximab

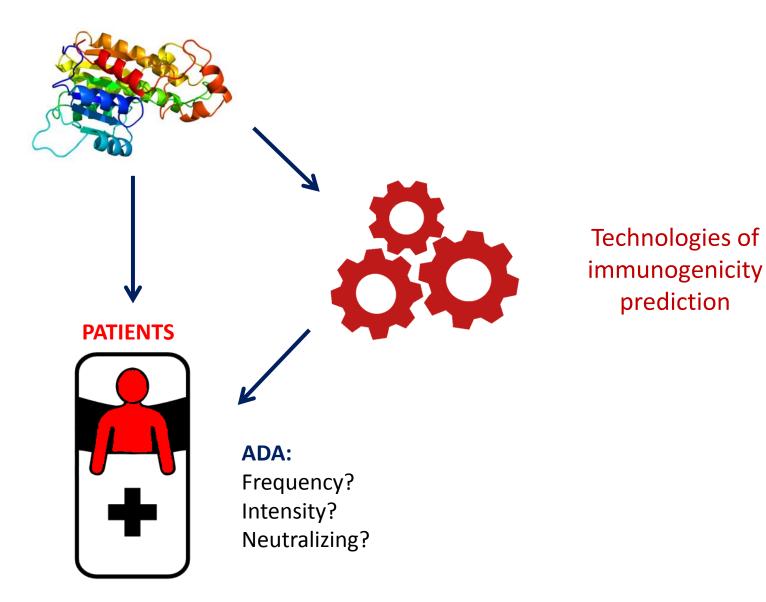
- Cetuximab and allergic symptoms
 - ✓ A chimeric Mab anti-EGFR: colorectal and head and neck cancer
 - ✓ Severe hypersensitivity reactions in 3% of patients (up to 22%)
 - ✓ Pre-existing antibodies: symptoms at the first injections of Cetuximab
- The antibodies are specific for galactose- α -1,3-galactose (α -Gal)
 - α-Gal : present in the Fab part of the cetuximab heavy chain
 - ✓ abundantly expressed on cells tissues of <u>nonprimate</u> mammals (SP2)
 - ✓ IgE result from allergy to tick bites or to meat (Beef, pork)

	Type of Cetuximad T					
Hypersensitivity reaction	SP2/0‡	CHO‡	lpha-gal			
Anaphylaxis related to cetuximab						
1	41.6	0.35	13.8			
2	38.8	0.35	35.2			
3	20.2	0.35	12.6			
4	11.1	0.35	2.9			
5	4.9	0.35	2.0			
6	4.2	0.35	2.7			

Type of Cotuvimab*

Cheung, NEJM, 2008

Cytokine Release Syndrome


- Origins of CRS
 - \checkmark Massive and transient release of TNF- α , IL-2 and IFN- γ
 - ✓ Peak serum TNF at 1 hr
 - ✓ Peak serum IFN at 4 hr
- Muromonab (anti-CD3)
 - ✓ In 1988, description of a reversible clinical syndrome observed in patients treated with Muromonab (anti-CD3)
- The dramatic first clinical trial with TGN1412
 - ✓ Humanized Anti-CD28 superagonist, stimulates Tregs in rats
 - ✓ I.V. injection in 6 volunteers March 2006
 - followed by a systemic inflammatory response: headache, myalgias, nausea, hypotension, lung injury, renal failure, acute respiratory distress syndrome

Symptoms not observed in animal models

- Effective dose is very low in humans in contrast to animal models including NHP
- ✓ Injected doses : very high for humans

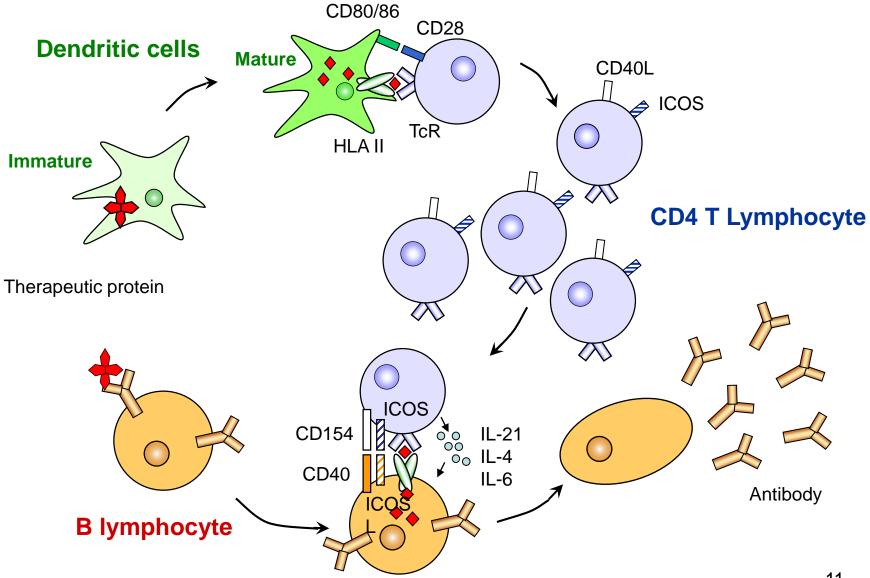
Aims of immunogenicity prediction

Limitations of animal models

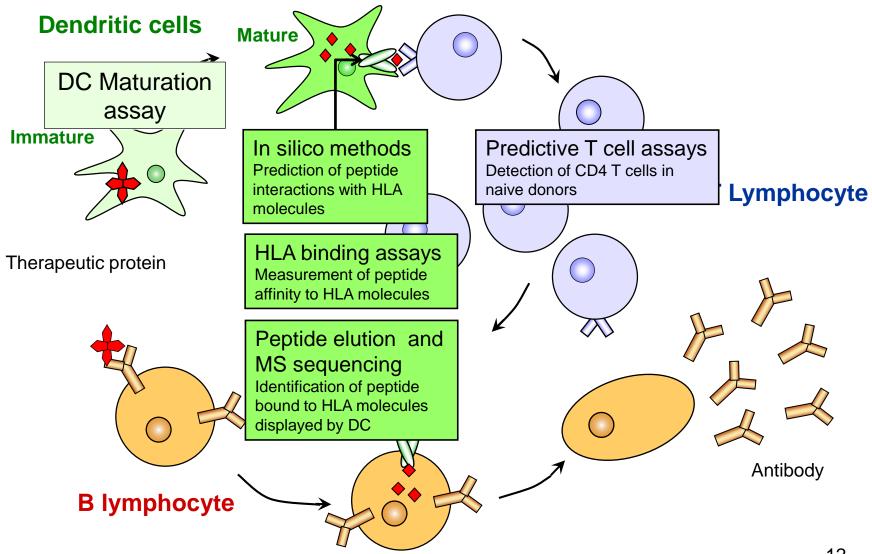
EMEA/CHMP/BMWP/14327/2006

Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins

4.2 NON-CLINICAL ASSESSMENT OF IMMUNOGENICITY AND ITS CONSEQUENCES


Human proteins will be recognised as foreign proteins by animals. For this reason, the predictivity of non-clinical studies for evaluation of immunogenicity is considered low.

Example: Etanercept


Following twice weekly s.c. administration, the majority of mice, rats and rabbits developed neutralizing antibodies prior to week 4 (EMA, Ref: WC500027358)

Indication	Nb of patients	Nb of injections	Ab response (%)	References
Rheumatoid arthritis	212	24	5	Dore et al, 2007
Psoriasis	611	Up to 96	18	Tyring et al, 2007
Psoriasis	486	24 to 60	2	Leonardi, et al 2003
Ankylosing spondylitis	53	48	0	de Vries et al, 2009

Cellular mechanisms of antibody response

Methods of prediction of immunogenicity

In silico methods

Objective

To predict the peptide interactions with HLA molecules

Method principles

- Peptide alignments (motif): SYFPEITHI, RANKPEP
- o Scoring matrices: ARB (IEDB), SMM-Align, PROPRED (TEPITOPE), DP4predict
- o Structural analysis
- Learning algorithms (NetMHCpan)

Availability

o Easy-to-do, not expensive, Web resources IEDB <u>www.immuneepitope.org</u>
o Proprietary resources

• Achievements (Wang et al, Plos, 2008)

- o Prediction of binders: very good but allele dependent
- o Prediction of CD4 T cell epitopes: overpredictive

Commonly used in early steps of drug development as preliminary immunogenicity assessment and for T cell epitope mapping

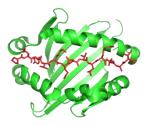
HLA Class II binding assays

Objective

To evaluate the affinity for multiple HLA II molecules

Method principles

Competitive ELISA assay, RIA Direct assay


Particularities

o Experimental data of affinity
o high throughput
o need to purify HLA class II molecules
o limited to preponderant alleles

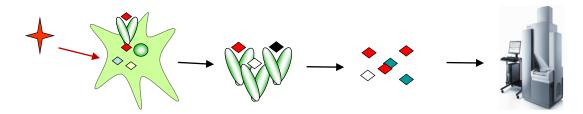
Achievements

- o Over-predictive
- Many T cell epitopes identified

Therapeutic proteins: FVIII, Mab, IFN, Epo Allergens: cat, dog, cow, birch, house dust mite, food Virus: HCV, HIV, Vaccinia, HSV, HBV Tumour antigens: Survivin, TRAG, NY-ESO, cyclin B1

	HLA II alleles	Frequency
Ø	DRB1*0101	9.3
	DRB1*0401	5.6
	DRB1*1101	9.2
	DRB1*0701	14.0
	DRB1*0301	10.9
	DRB1*1301	6.0
	DRB1*1501	8.0
The second	DRB5*0101	7.9
	DRB3*0101	9.2
	DRB4*0101	28
	DPB1*0401	40
	DPB1*0402	11

(Texier *et al* . J Immunol. 2000; Texier *et al*. Eur J Immunol. 2001 Castelli *et al*. J Immunol. 2002)


Peptide elution and MS sequencing

Objective

To identify naturally processed peptides bound to HLA molecules displayed by DC

Principle

(also called MAPPS assay MHC-associated peptide proteomics)

Particularities

- Experimental data of peptides displayed by the DC
- High throughput (panel of donors)
- Effect of aggregation, formulation on peptide presentation

Achievements

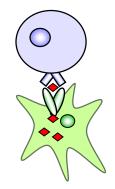
- Prediction: under investigation
- $\odot~$ Differences between native and aggregated antibodies
- Expected to be overpredictive

Predictive T cell assays

Objective

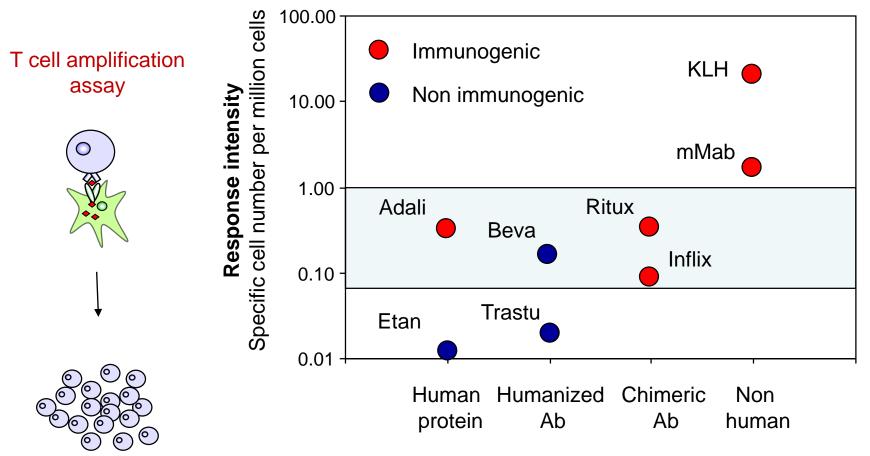
To evaluate the capacity of therapeutic proteins to elicit a CD4 T cell response in humans

Common principles


- Naive donors (no previous contact with the therapeutic protein)
- HLA class II molecules representative of the population diversity
- o Activated T cells are detected after a culture phase with the protein

• Multiple assays formats

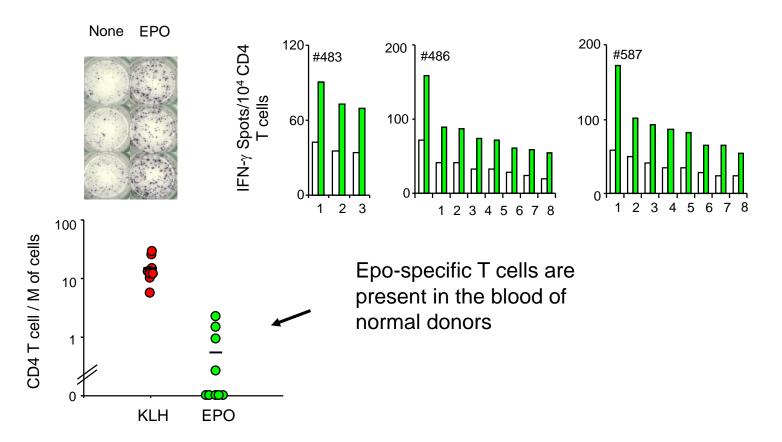
- Different experimental procedures
 - Culture conditions
 - Number of stimulations
 - Read-out (proliferation, Elispot, ICS)
- Number of donors HLA coverture
- Relative or absolute values (number of pre-existing T cells)


Achievements

- Existence and size of a pre-existing CD4 T cell repertoire specific for a protein
- Identification of immunogenic regions (T cell epitopes)

Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors

(Maillere, FASEB J, 2011)


Predictive T cell assays discriminate **non immunogenic** antibodies to **immunogenic antibodies**

(one exception Bevacizumab in cancer patients)

Quantification of the preexisting CD4 T-cell repertoire specific for human erythropoietin reveals its immunogenicity potential

Maillere, Blood, 2010

- Pure Red Cell Aplasia (PRCA): antibody response to injected recombinant EPO.
- In the late 90s. changes in the formulation and injection mode of recombinant Epo were associated with a sudden increase in cases of PRCA.
- CD4 T cell response unknown

EABIRSSIN Humanization of antibody sequences

WWW.ABIRISK.EU

Chimeric

Humanized

RITUXIMAB
 Anti-CD20
 Non-Hodgkin lymphoma: 0.6%
 SLE, RA, Sjogren: 17-50%

INFLIXIMAB
 Anti-TNFα
 Crohn, RA, SPA: 30-50%

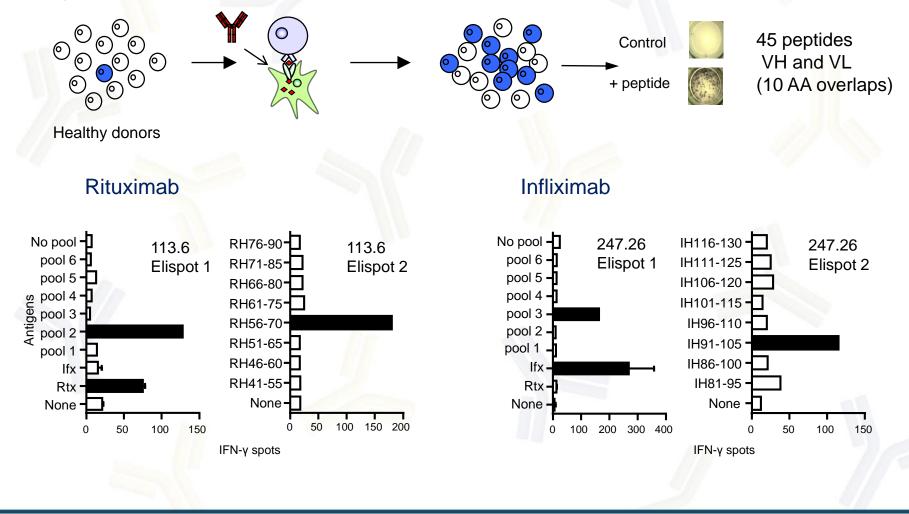
etpia

NATALIZUMAB:
 Anti-α4 integrin
 Multiple sclerosis: 6-21%

Fully human

ADALIMUMAB
 Anti-TNFα
 RA: 30%

%: taux d'ADA



The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.'

T cell epitope mapping of Rituximab and Infliximab

Long-term T cell assays

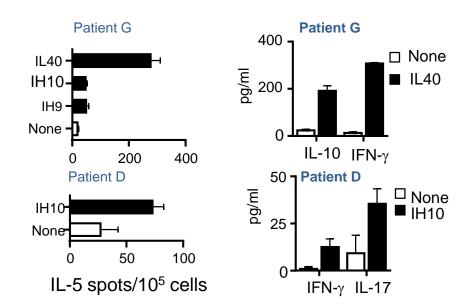
WWW.ABIRISK.EU

efpia

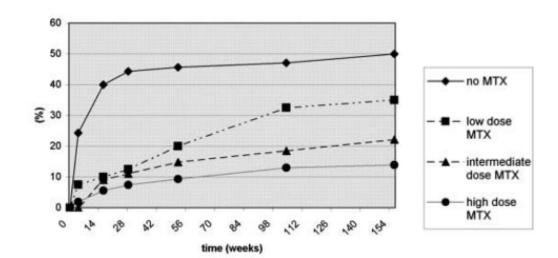
The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.'

- qPCR MSD FACS
- Native antibodies are not active in this assay although they can be immunogenic
- Only artificially aggregated antibodies are active

efpia

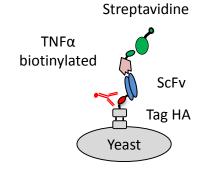

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.'

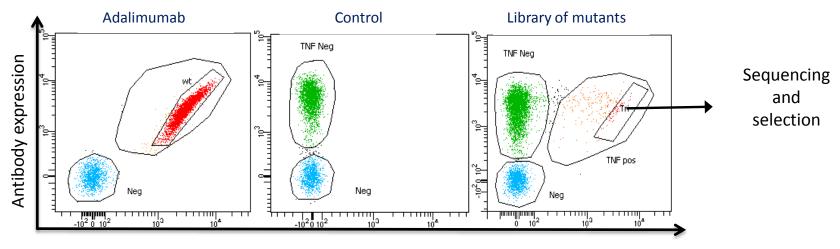
Clinical perspectives


Improving immunomonitoring

ADA assays T cell immunomonitoring

 Combining with immunosupressive drugs


Krickaert, 2012



De-immunization of therapeutic proteins

- Humanization is not sufficient
- Removal of T cell epitopes
- Yeast display
 - Generation of libraries
 - Active mutants
 - Sorting by cytometry

Library of mutants of Adalimumab

TNF binding

Conclusion Global analysis of immunogenicity risk

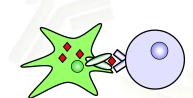
Immunogenicity :

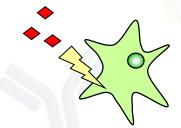
PK, efficacy: Risk for the company Allergic, autoimmune, CRS: Risk for the patients

Signal 1: a large toolbox

In silico, HLA binding assays, MAPPS, T cell assays... preliminary assessment, T cell epitope mapping, deimmunization, ranking of molecules.

Signal 2:


DC maturation, aggregation study


How to use the provided information? In vivo? How to combine with signal 1 data?

Assessment of risk immunogenicity

- Prediction: focuses on product-related factors
- Should be included in a global analysis of immunogenicity risk
 - (treatment, patients)

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.' www.imii.europa.eu

Acknowledgments

Bernard Maillere

Catherine Menier Hervé Nozach

Sylvain Meunier

Marie de Bouraine Aurélien Azam Fabien Guegnon Pierre Bonnesoeur Coline Sivelle Raphael Sierocki

Moustafa Hamze Amélie Goudet Inserm

Natacha Kerzerho-Szely, Marc Pallardy

Xavier Mariette Corinne Miceli-Richard

Franck Carbonnel

Sebastian Spindeldreher Anette Karle

http://www.abirisk.eu/

