

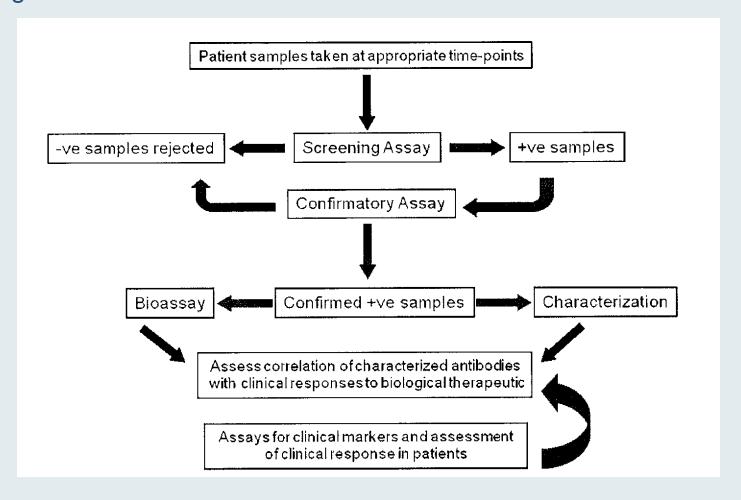
Eurofins ADME BIOANALYSES

Introduction à l'immunogénicité

PROTEINOV 2016

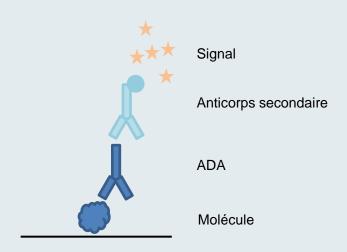
Jean Paul FRECHE

- Capacité d'induire la production d'anticorps
 - Réponse immunitaire spécifique
- La conséquence d'une réponse immunitaire va être la circulation d'anticorps.
- L'immunogénicité va être recherchée pour des approches de types vaccinales (AVA).
- Elle devra être évitée pour toutes autres approches (ADA).


- L'apparition d'ADA va dépendre :
 - De la taille et de la structure de la molécule
 - Les médicaments chimique ne provoque pas la production d'ADA (taille réduite)
 - Du mode d'administration
 - Du nombre d'administration
 - De la dose administrée
 - De la formulation
 - De la pureté de la molécule
 - Du patient (facteurs génétiques, âge, pathologie)
 - De ses traitements associés (immunosuppresseur)
 - Précédente exposition à une protéine relativement similaire

- La recherche d'ADA devra être faite dans les études précliniques et cliniques.
- Les résultats obtenus dans les études précliniques ne sera pas prédictif de la réponse chez l'homme.
- Des méthodes analytiques validées seront utilisées pour détecter les immunoglobulines de façon spécifique, elles devront être sensibles, précises et reproductibles.
 - Détection ≠ Quantification

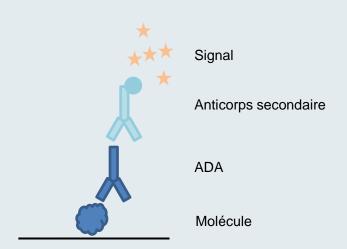
Stratégie décrite dans le texte EMEA/CHMP/BMWP/14327/2006


Dosage: Détection ≠ Quantification

Cut point

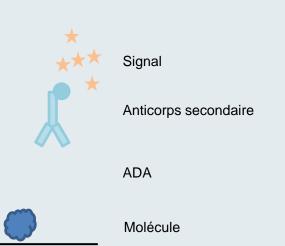
- Niveau de réponse permettant de classer les échantillons en positif ou négatif
- Valeur du signal pour laquelle un échantillon ayant une réponse inférieure sera considéré comme négatif.
- Screening cut point (SCP) & Confirmatory cut point (CCP)

Méthode directe



SCP & CCP

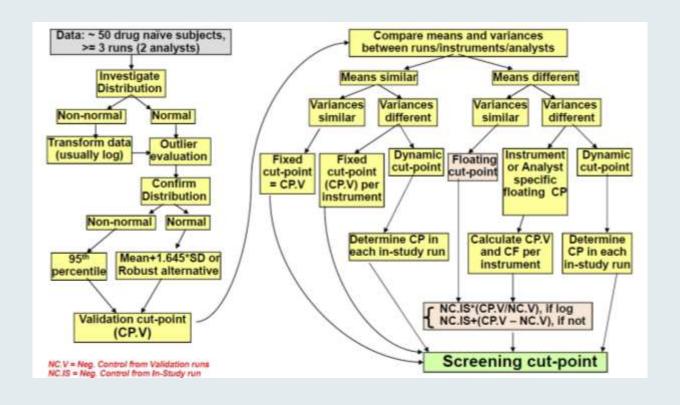
Chute de signal


Screening cut point (SCP) :

Confirmatory cut point (CCP):

Incubation préalable

- Contrôle négatif
 - Clinique: Pool de matrice à partir de 10 sources individuelles
 - Non-clinique: Le pool peut être préparé à partir d'un nombre réduit de source individuelles (ex: 5).
- Contrôle positif
 - Doit refléter si possible la réponse immunitaire qui sera induite
 - Polyclonaux préférentiellement
 - Possibilité de production par immunisation d'animaux
 - A savoir: Les anticorps de singe croisent avec les anti anticorps humain



- SCP & CCP calculés sur une population d'échantillons négatifs
 - Clinique: Au moins 50 échantillons analysés sur 3 séries
 - Non-clinique: Au moins 15 échantillons analysés sur 3 séries

- Ils sont statistiquement calculés afin de détecter:
 - SCP : 5% de faux positifs
 - CCP: 0.1% de faux positifs

Détermination du cut point

Détermination du cut point

Calcul du cut point pour une validation (clinique)

- Eliminer les valeurs aberrantes
- Montrer que la distribution est normale
- Si la distribution n'est pas normale transformé en log
- Faire le calcul du cut point avec la formule

ODcut-point = mean ODB + $1.645 \times SDB$

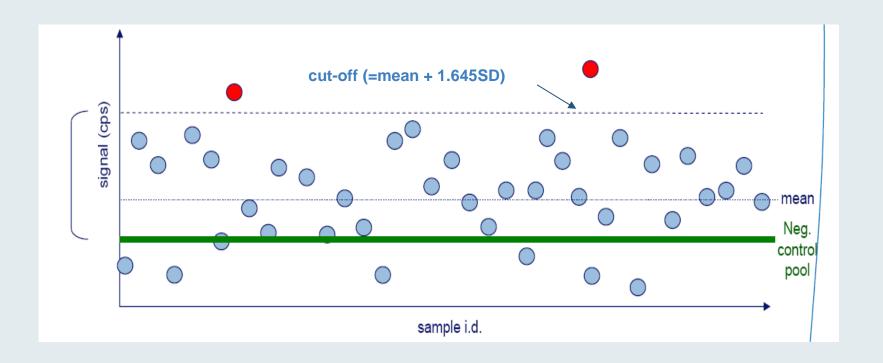
Détermination du cut point

Les différents cut points

- Fixed cut point : il est calculé et fixé durant la validation. Il sera appliqué lors des études de détermination des ADA
- Floating cut point : il sera recalculer pour chaque étude en utilisant le facteur de normalisation
- Dynamic cut point : il est recalculé pour chaque plaque (à éviter, revenir éventuellement en développement du test.

Facteur de normalisation

Calcul du facteur de normalisation


Facteur de normalisation (NF) = OD cut point/OD contrôles négatifs

OD contrôles négatifs sera la moyenne des signaux obtenus avec un pool d'échantillon négatifs (contrôle négatif) mesuré.

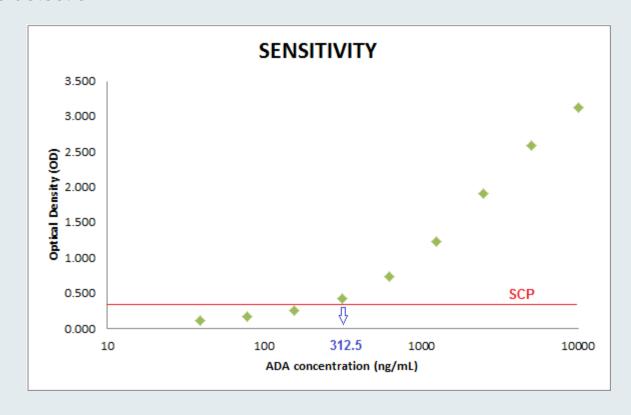
Facteur de normalisation

Calcul du facteur de normalisation

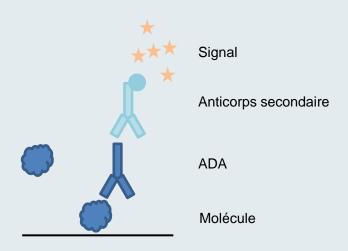
Test de confirmation

Calcul du % d'inhibition

% d'inhibition = 100 (1 – (signal avec surcharge/signal sans surcharge))


Un cut point de confirmation sera calculé avec les contrôles négatifs pour les études cliniques

- Validation analytique
 - SCP & CCP
 - Précision intra et inter essais
 - Sensibilité
 - Sélectivité
 - Tolérance
 - Effet prozone
 - Stabilité (Short term, Freeze/thaw cycle, long term)



- Paramètres de validation
 - Sensibilité
 - Limite de détection

- Paramètres de validation
 - Tolérance
 - Détection de l'ADA en présence de la *Molécule*

- Bioassay = Test de neutralisation
- Réalisé sur des cellules
- Le test de neutralisation permettra de connaitre le pouvoir neutralisant des ADA.
- Est-ce que les ADA empêchent l'activité du produit?

Test de neutralisation

La draft de la FDA préconise d'établir une courbe d'activité et de travailler dans une partie représentative.

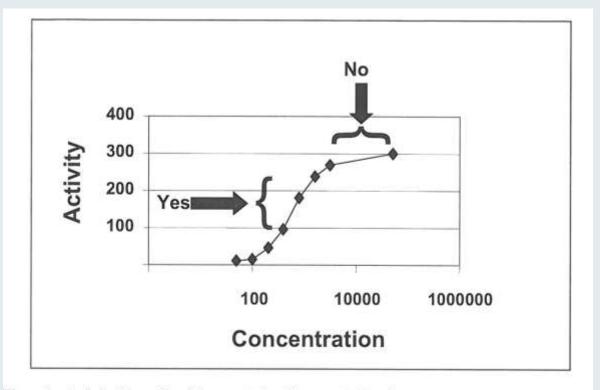
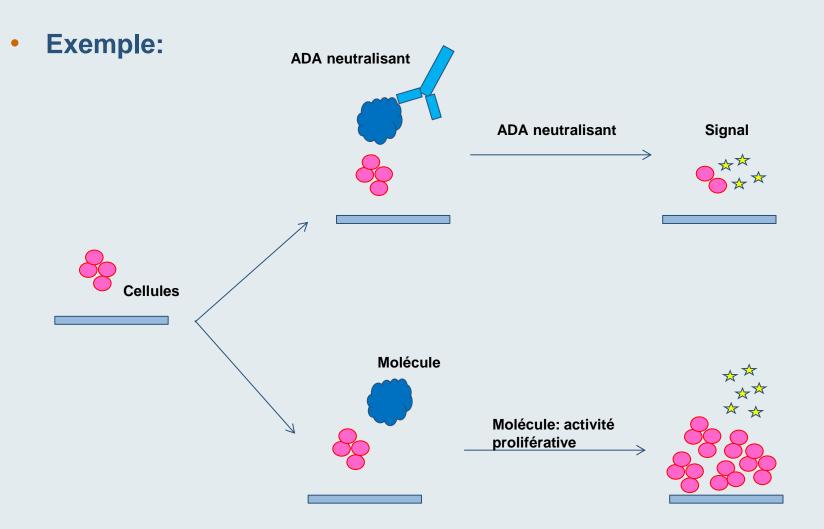


Figure 1. Activity Curve for a Representative Therapeutic Protein.



- Dosage: Détection ≠ Quantification
- Résultats rendu concernant la présence d'ADA neutralisants:
 - Oui
 - Non
- Si présence d'interférences dans les pre-dose des patients le T0 du patient servira de référence pour les prélèvements T + x jours.

- Validation analytique
 - SCP & CCP
 - Précision intra et inter essais
 - Sensibilité
 - Sélectivité
- Utilisation de lignée cellulaire stable
 - Importance du nombre de passage, des lot de milieu de culture
 - Cellules immortalisées
 - Rigueur appliquée aux temps d'incubation
 - Minimisation des facteurs de variabilité

Conclusion

- L'immunogénicité doit être évaluée:
 - chez l'homme
 - chez l'animal
- Avec des méthodes validées
- Elle peut impacter:
 - La pharmacocinétique,
 - La pharmacodynamie,
 - Choc anaphylactique,
 - Réaction sur une protéine endogène.
 - La vie du produit!!!