Préservation de la sécurité du patient : Impacts de la définition du procédé à la production en continue d'anticorps monoclonaux

Vincent Monchois Director, Strategic projects

PROTEINOV 2016

Introduction

- Reduction of raw material, CAPEX cost
- Process simplification
- High Throughput

Batch Process

Benefits

- Savings for production costs (biosimilars)
- enlarge the access to Biopharmaceuticals

Different approaches

- Continuous steps
- Periodic steps
- Fully integrated tests

Introduction

Patient Safety ?

Batch Process

Case study of the use of continuous chromatography for mAb purification

Outline: Continous process for mAb purification

- BioSC® & Multi-columns continuous chromatography
- mAb purification plateform based on continuous chromatography
- Patient Safety
 - Regulatory Perspectives
 - Process Performances & Controls
 - Viral Clearance

BioSC®, Multi-columns continuous chromatography

- Continuous chromatography solution to Capture
- Adapted equipment to perform classic bind/elute steps
- Use of total of the resin static capacity
- Standard Process: Five steps
 - 1. Load of the crude
 - 2. Wash of the less retained species
 - 3. Elution of the targeted compound
 - 4. Regeneration
 - 5. Equilibration

Advantages of BioSC® vs Batch chromatography

- Production cost (resin, buffer...) reduction
- Productivity and time to market optimization
- System size and footprint reduction
- Streamlining processes

Multi-columns continuous chromatography principle

Operating in steady state

- ✓ Same critical attributes during the run
- ✓ Specific characterization of start and end of production (~ 1 cycle)

Case study of mAb continuous purification

Standard Batch Process

Case study of mAb continuous purification

Patient Safety ?

Clarification/UF MF & Depth filtration

Regulatory perspectives

CFR 210.3.

- Batch: a specific quantity of a drug (..) intended to have uniform character and quality (...) and is produced according to a single manufacturing order during the same cycle of manufacture
- Lot: a batch, or a specific identified portion of a batch, (...), or, in the case of a drug product produced by continuous process, it is a specific identified amount produced in a unit of time or quantity (...)

✓ Batch & lot: definition fully applicable

✓ No specific regulations nor guidance's

Steady state : the KEY factor to control

APPRO

Process design & control to insure same CQAs

Quality Attributes	Impact	
Aggregation	Enhanced immunogenicity	
Glycosylation Non-Glycosylated Heavy Chain Galactosylation Sialylation Afucosylation High mannose Host Cell Protein (HCP)	Affect ADCC Impact ADCC Galactosylation (%G0, %G1 and %G2) can affect CDC & ADCC Sialylated forms can impact PK and ADCC Afucosylation of IgG1s correlates with ADCC afucosylated forms impact ADCC Inflammatory	

DNA

Amino acid modification Deamidation Oxidation

Oncogen transfer (> 60pb)

Dependent of the location (CDR, Fc...) Common at Asn/Gln

C-terminal Lysine Truncation Impact on pharmacokinetics

Leached Protein A

Immunogenic and mitogenic effects

Process design requirements

160.00 180.00 140.00 180.00 140.00 120.00 \$00.00 100.00 80.50 \$0.00 \$0.00 00.00 40.00 40.00 10.00 29.00 0.00 3.00 1.00 0.03 10.00 15.00 4.000 10.68 15.00 20.00 0.05 Conductivity (ms/cm) **Conductivity** (ms/cm) IEX-G IEX-H 162.00 160.00 140.00 140.00 110.00 122.00 100.00 100.00 90.00 \$0.00 60.00 60.00 40.00 40.00 20.00 10.00 0.00 0.00 0.00 10.00 15:00 0.00 15.00 20.00 3.00 10.00 Conductivity Ins/cml **Conductivity Ims/cm**

Standard approach as for batch for process development

- CPPs and CQAs
- Design space
- Single column approach

✓ Specific items to support switch to continuous

- Breakthrough curves for static binding capacity
- Process modelization : robustness and optimization
 - Maximize media and buffer savings
 - Maximize productivity

5

Critical Quality Attributes Case study of mAb continuous purification

	Feed	Std spec.	Continuous process
IgG purity (%)	12.2-15.9	>95	97,8
Aggregates purity (%)	4.7-9.4	< 3	2,2
HCP (ppm)	~200,000	< 5	< 2
DNA (ppm)	~4,000	< 10	1

Product Quality unchanged with a continuous process

Potential positive impact (unstable proteins)

Managing viral clearance Case of mAb DSP from CHO

Viral risk

- Non pathogenic rodent retrovirus
- Model virus : retrovirus (XMuLV)
- Standard viral clearance steps
 - pH inactivation (virus inactivation)
 - Nanofiltration (virus retention)
 - Optional: chromatography step
- Virus clearance validation
 - Scale down model
 - Spiking studies

Managing viral clearance pH inactivation: Batch process

- Batch inactivation

- CPPs:

- pH
- mAb concentration
- Temperature
- Incubation time
- Worst-case conditions can been identified
- Scale-down model: efficient mixing within the established time limits

Managing viral clearance pH inactivation: **BioSC® process**

- Carrousel of batches

- CPPs: Identical

- рН
- mAb concentration
- Temperature
- Incubation time
- worst-case conditions: Identical
- Scale down model: Identical

Sequential drums rotation while purification process is at steady state

Managing viral clearance pH inactivation: Type of processes

Two options: pH neutralization or direct injection of IEX

✓ 2 x ~200L drums : Switch every 140 min & Interswitch: 80 min
✓ Min. inactivation time (60 min) <t+200 min< max. holding time

Managing viral clearance Model case #2 : pH inactivation followed by IEX

 \checkmark 3 x ~ 200 L drums : Switch every 105 min & inter-switch: 110 min

- ✓ IEX start: every 129 min.
- ✓ End of inactivation time: 165 min

Managing viral clearance Viral clearance by chromatography: Batch

- Parameter classifications and range
 - CPPs
 - Design Space

Life time study

- One column study
- >200 cycles
- Impact on process performance or impurity clearance over time

- Scale-down model & spiking study

- One column study
- LRV > 4

Managing viral clearance Viral clearance by chromatography: **BioSC® process**

- Parameter classifications and range
 - CPPs
 - Design Space
 - Static binding capacity
 - Steady state
- Life time study
 - One column study
 - >200 cycles
 - Adaptation of study (70-80% loading vs 10%)
- Scale-down model & spiking study
 - Specific to continuous process
 - Designed in collaboration with Texcell

Managing viral clearance BioSC® downscale model for viral clearance

Process: IEX

BioSC® 3- column

Downscale model

BioSC® 3- column

		1
(\odot	

✓ Standard scale-down consideration

✓ Steady state consideration

(constant height, linear velocity...)

Bed height	10 cm
Load/cycle (Bed volume)	29
Elution/cycle (Bed volume)	6
Cycle time	116 min

Bed height	10 cm.
I.d. columns	1,1 cm
Load/cycle	827 ml
Elution (Bed volume)	171 ml
Cycle time	116 min.

- Start of production ~0, 5 cycle: no spiking
- Steady-state: 3 cycles
- End of production ~0,5 cycle: no spiking

Managing viral clearance BioSC® downscale model: viral challenge

Procedure

- 1% Spiking (~ 8 ml of viral. solution à 10^7 TCID50/ml) of the load
- Spiking at each period
- Operation time: < 1 day
- Equipment: mobile BioSC® Lab

Results

- Results in triplicate: 3 LRV
- LRV > 4 (1 LVT) up to > 5 logs (10 LVT)

Budget estimate

- Preliminary testing, mock run; spike runs & titration: ~ 50-60 k€/virus
- 40-45 k€/additional virus

Conclusions

- Regulatory compliance & process validation
 - No specific requirement

Process design

- Adaptation of batch procedures
- CQAs unchanged

Process control

Characterization & maintaining steady state operation

Viral clearance management

- Two main approaches:
 - Introduce sequential steps to follow standard batch procedure (pH inactivation)
 - Develop specific downstream model (virus spiking)

Thanks

Any questions ?

