Understanding and steering microbial functions in mixed culture environmental biotechnology processes

Théodore BOUCHEZ,

Irstea-Antony, France

Pour mieux affirmer ses missions, le Cemagref devient Irstea

www.irstea.fr

Hydrosystems and bioprocesses research unit

theodore.bouchez@irstea.fr

adebiotech

Les microbiotes

et la santé humaine, animale et environnementale : Prévention et traitements du futur

Biocitech Romainville-Grand Paris

The "functional convergence" of microbiomes

$\begin{array}{c} \textbf{C}_5\textbf{H}_7\textbf{O}_2\textbf{N} + 3 \ \textbf{H}_2\textbf{O} \rightarrow 2,5 \ \textbf{CH}_4 + \\ 2,5 \ \textbf{CO}_2 + \textbf{NH}_3 \end{array}$

Processes underpinning microbial community assembly (Nemergut *et al.*, MMBR 2013)

Processes at play in environmental biotechnology processes ?

Process	Description	N.C
Diversification	Generation of new genetic variation	IVIINOr
Dispersal	Movement of organisms across space	Major
Selection	Changes in community structure caused	-
	by deterministic fitness differences	Major
	between taxa	· · · ·
Drift	Stochastic changes in the relative	
	abundances of different taxa within a	Minor
	community through time	

TABLE 2 Vellend's four processes for community assembly

Selection as a key tool for managing microbes in environmental biotechnology processes

Ecological niches available => environmental filtering => fitness selection

Environmental biotechnology processes are typical "Bass Becking ecosystems"! *"Everything is everywhere, but the environment selects"* Baas Becking, 1934

Diverse biotopes exhibit coherent functional assembly patterns

Healthy human microbiome

Ocean microbiome (Raes *et al.*, 2011 MSB 7:473; MSBLouca *et al.*, 2016; Science 353: 6305) Soil microbiome (Nelson *et al.*, 2016 PNAS 113: 29) Plant foliage microbiome (Louca *et al.*, 2016 Nat. E&E 1:15)

Environmental biotechnology processes: selection through energy gradients

 $|\Delta_r G_{cat}| > |\Delta_r G_{cat}| > |\Delta_r G_{cat}| > |\Delta_r G_{cat}|$

A thermodynamic principle underlying functional community assembly in environmental biotechnology processes?

Thermodynamic balances of microbial growth

anabolism

 $\Delta G_{met} = \Delta G_{an} + \lambda$. $\Delta_r G_{cat} = \Delta G_{dis} = f$ (substrate)

Introducing the exergy concept

$$E_{dis} = \lambda \cdot E_{cat} - E_{M}$$

From thermodynamic balances to kinetics using first principles?

To cite this Article KLEEREBEZEM, ROBBERT and VAN LOOSDRECHT, MARK C. M.(2010) 'A Generalized Method for Thermodynamic State Analysis of Environmental Systems', Critical Reviews in Environmental Science and Technology, 40: 1, 1-54

The Microbial "Transition State" theory (MTS)

Desmond-Le Quéméner and Bouchez, The ISME-J, 2014

Resource allocation among microbes: a statistical question

- Define the spatial distribution of molecules in the medium
- Introduce V_{harv} « the harvesting volume »
- Compute the distribution of molecules in the various harvesting volumes
- $\Rightarrow N^{\ddagger}$ can be deduced from this calculation

$$\frac{N^{\ddagger}}{N} = \exp\left(-\frac{E_M + E_{dis}}{V_{harv} \cdot [S] \cdot E_{cat}}\right)$$

Desmond-Le Quéméner and Bouchez, The ISME-J, 2014

Growth rate as a function of substrate according to MTS theory

Desmond-Le Quéméner and Bouchez, The ISME-J, 2014

10

Illustrating MTS model properties

 Predictions in relation to the microbial isotopic fractionation phenomenon
From modeling a pure culture in a minimal medium*...

3. ...to mixed culture ecosystem models*

*Hadrien Delattre PhD 5th July in Irstea Antony

-0.167 $C_6H_{12}O_6$ **-0.158** NH_4^+ + 0.430 H_2O + 0.164 H^+ + 0.00625 HCO_3^- + 1 $C_1H_{1.613}O_{0.557}N_{0.158}$

new biomass

Catabolism

+ λ (- 1 C₆H₁₂O₆ - 6 O₂ + 6 HCO₃⁻ + 6 H⁺)

Capturing the effect of all resources on anabolism and catabolism

13

Initial ammonium 10.0 mM

Initial ammonium 18.7 mM

Growth patterns still compatible with « Liebig rule » of the single limiting substrate

Illustrating MTS model properties

- 1. Predictions in relation to the microbial isotopic fractionation phenomenon
- 2. From modeling a pure culture in a minimal medium*...
- 3. ...to mixed culture ecosystem models*

Microbial « redox towers »

http://www.hhmi.org/biointeractive/poster-winogradsky-column-microbial-evolution-bottle

http://www.esf.edu/efb/schulz/Limnology/redox.html

Invariant microbial functional community assembly patterns

Energy dependent competition arising without parameter adjustment

Microbial successions according to redox tower are obtained parsimoniously from first principles

Modeling a simplified activated sludge batch ecosystem

-1 HCO_3^- - 2.64 NO_2^- - 1.16 H⁺ + 0.27 H₂O + 2.49 NO_3^- + 1 C₁H_{1.613}O_{0.557}N_{0.158} + $\lambda (-1NO_2^- - 0.5O_2 + 1NO_3^-)$

 λ is dynamically adjusted using the Gibbs energy dissipation method (Kleerebezem and van Loosdrecht, 2010)

MTS derived-dynamics: $\mu = \mu_{max} \cdot \prod_{i=1}^{N} e^{\frac{\nu_{i(\lambda)}}{V_h \cdot C_i}}$

where (i) μ_{max} is fixed to $(\frac{k_B \cdot T}{h})$ and (ii) V_h is kept the same for all substrates and all groups

Modeling a simplified activated sludge batch ecosystem

(Delattre et al., submitted)

- [acetate] = 103.9 mg.L⁻¹
- [ammonium] = 68 mg.L⁻¹
- microbial inoculation: 1 mM (25e6 cell.mL⁻¹)
- kla = 100 d⁻¹

Consistent dynamic patterns are obtained parsimoniously

Kinetic parameters: 9 Yield parameters: 3 Kinetic parameters: 2 Yield parameters: 0 Microbial thermodynamics and ecosystem modelling...

- In microbial ecology, scientific bottlenecks are progressively shifting from analytical methodologies to knowledge integration into an inclusive picture
- The development of a more **conceptual framework** is needed
- Microbial thermodynamics: crossing disciplinary boundaries between biology, physics and math.
- Future perspectives:
 - Thermodynamics driving forces and ecosystem functional convergence: studying the link with ecological goal functions
 - Predictive models for ecological engineering of microbial communities in environmental biotechnology processes

Many thanks to...

All the PROSE team members in Irstea-Antony http://www.irstea.fr/la-recherche/themes-de-recherche/ted/biomic

Hadrien Delattre, PhD candidate Microbial thermodynamics July 5th, 9h30, Irstea-Antony

irstea

Elie Desmond-Le Quéméner, INRA-LBE Microbial thermodynamics

Project number ANR-16-CE04-0003-01

- **Postdoctoral position1**: MTS theory and effect of temperature open
- Postdoctoral position2: MTS theory and phototrophic growth - filled
- PhD position: Challenging MTS theory with experiments filled

