Protein self sufficiency of livestock: sustainability first

Insectinov 2 - Adebiotech / AgroParisTech

Patricia LE CADRE - CEREOPA

Summary

Self-sufficiency = demand vs resources

 \bigcirc Protein self sufficiency : which proteins are

we talking about ?

 \bigcirc What are the levers to increase the protein

self sufficiency of monogastrics ?

Self-sufficiency = demand vs resources

To speak of the protein self sufficiency of livestock production, it is necessary to know not only the supply but more importantly the demand (quantity and quality)

Demand for animal proteins expected to rise but many uncertainties

Demographics : vast uncertainties even with quite orthodox scenarios.

Purchasing power : how big are really the emerging classes ; for 10 years, world GDP growth has been slowing down ; inequalities are growing in rich countries.

Food transitions : meat consumption increase in developing countries, in developed countries upper classes tend to reduce their meat consumption.

Poultry and seafood shoulder-to-shoulder in terms of consumption in 2030

(two animal products consuming concentrated proteins)

Global trade of animal products expected to continue to grow

75% of the population in cities in 2050 and megapoles that will be port cities. What about local supply?

A demand for animal proteins that will lead to different production models... not to oppose

Resources parameters

Resources subject to volatility

Techniques and technologies improuvement

Source : La moisson, representation allégorique du mois de juillet, manuscrit du 1 4ème sciècle

- ✓ In 14th century, one farmer could bearly cultivate 1 hectare and produce 1 tonne of grains on it.
 ✓ Yield was very connected with drought and
- field was very connected with arought ar diseases.

Source : Paysan Breton, 14 décembre 2016

- ✓ In most advanced countries, 1% to 2 % of people fed the entire population.
- \checkmark The population has been multiplicated by 3.

Despite uncertainties, world needs in animal and vegetal proteins should increase

3 major determinants of the balance between supply and demand

Protein prospective 2030

Protein prospective 2030

At a world scale, negative balance of 15% in oilseed meals by 2030 ?

Summary

Ruminants...and the others : Very different protein supply and demand

Overall increase in industrial feed production in China and other emerging countries

TOP FEED INGREDIENTS*

CEREALS : Corn (76% preference), Wheat (21%), barley (1%), mix corn/barley (1%) **PROTEINS** : Soybeanmeal (96% preference), Sunflower (1%), rapeseed/canola (1%)

(*2016 Alletch global feed survey results)

Patricia Le Cadre- Céréopa -Insectinov 2 - Adebiotech / AgroParisTech

(Source: Alltech 2017)

Proteins of crop origin : demand is connected with the kind of animal production

A country's protein self-sufficiency relies on several factors

- ✓ Interior demand in animal and vegetal products : quantity et quality (specifications)
- Interior supply in cereals and oil-protein rich plants (depending on soil and climate context, subsidies, regulations)
- ✓ Forrage availability (meadows, silage)
- Share of ruminants vs monogatrics
- Expertise level in animal feeding
- Comparative prices between raw materials
- ✓ Agricultural and energy policies, international trade regulations (sanitary rules, tariff barriers)

Protein Self sufficiency for the EU in 2015/16

(excluding forages) – Source European Commission

France is a net protein exporter (about 2M tons) but is a net PRP* importer.

Proteins of crop origin : not only soybean

Protein self-sufficiency on PRP : France is a model pupil in the EU

French protein self-sufficiency on PRP : far above the European average

A real french performance concerning soy consumption

Pool of available proteins is much wider than PRP

FRANCE : contributions of RM at protein supply in industrial feed

Summary

- \bigcirc Self-sufficiency = demand vs resources
- \bigcirc Protein self sufficiency : which proteins are

we talking about ?

What are the levers to increase the protein

self sufficiency of monogastrics ?

Soymeal remains an inescapable raw material

A lot of advantages...

- 66% of world supply in oilseeds (vs sunflowerseeds 7% and rapeseeds11%)
- An especialy well designed protein (well balanced in amino-acids)
- A quality / price balance which remains attractive
- A volatility which is not really higher than other meals
- Low fertilizer requierments (legume)
- The decline in imports is not the guarantee of an improvement in protein autonomy (Black Sea sunflower meal, canola gmo)

But...

Two drawbacks : deforestation (cerrados Brazil) and GMO
Asia and Africa are purchasing more and more soybeans (China market share in soymeal equivalent has increased from 10% to 39% in 15 years while the share of UE was falling from 39% to 19%)
An upward trend in the soymeal/wheat ratio

- ✓ Soybean made in France (interprofessional project, objective : increase cropland from 140 000 ha to 250 000 hectare in 8 years, remplacing 0,5Mt imports non gmo soyameal,)
- ✓ Danube soya and Europe soya : OGM free, two standards certified in order to meet half of the demand.

Several raw material prices volatility – France – 05/15

Soja price divided by wheat price - France

Rapeseed meal : increase protein rate

 Rapeseed meal price variation depending on its protein rate

✓ Raw material cost for feed industry and protein self sufficiency depending on rapeseed meal protein rate.

- > Feed industrials are ready to pay for an increase of the protein level (1 point CP = +7/8 \$/t)
- > Make protein level higher leads to savings. Protein self sufficiency increase by 0,45 pourcentage point when CP level grows by 1% context 15/16
- But a production of rapeseed in UE linked to a political demand (biofuels) called into question (clean energy package)

Amino acids can reduce CP needs level.

What is the ranking of limiting AA in feed formulation ? Example broiler feed

- ✓ Valine is the 4th limiting AA after Met, Lys and Thr
- ✓ Arginine and Ile (or Trp) are colimiting after Val
- ✓ L-Valine allows a dietary CP reduction in broiler feeds of 0.6 to 0.9 points of CP (depending on the cereal used)

Processed Animal protein for feed : Do insect meals suit monogastrics ?

Advantages

- \checkmark A lot of fundraising for start-ups everywhere in the world
- ✓ A very interesting digestibility and amino-acid profile

Drawbacks

- Meat meals forbidden in the EU since 2000 (but very often used in Brasil and Asia)
- Regulatory restrictions for insect meal (sanitary, animal welfare) in the EU stronger than in the other regions
- ✓ Authorization since july 2017 for fish breeding
- ✓ Sustainability that remains to be demonstrated (energy, input)
- \checkmark A very high cost and price level which eliminates farm animal from the market
- ✓ A very high cost level which require added value opportunities (petfoods, cosmetics, biodiesel) → business model to find
- \checkmark A resource which will remain limited at the world scale.

A notion of sustainability that evolves

The reasons for continuing to improve our protein independence in the future:

- ✓ Support local productions and our breeding industries
- ✓ Improve the sustainability of our livestock productions and their traceability
- ✓ Avoid the use of imported soybean and its twofold handicap (GMO and deforestation), especially in poultry production
- ✓ Secure our supplies

Thank you for your attention !

Centre d'Etude et de Recherche sur l'Economie et l'Organisation des Productions Animales

