

INSECTINOV2

ALIMENTATION - APPLICATIONS - NOUVELLES FILIÈRES INDUSTRIELLES

Aurélie GESNOUIN - Franck LAUNAY

LES CONTRAINTES DU SCALE-UP DE LA PRODUCTION D'INSECTES

POINT DE VUE D'UNE INGÉNIERIE SUR DES DÉVELOPPEMENTS RÉCENTS

IPSB Ingénierie de Procédés Sucres et Biotechnologies

INTRODUCTION

- > IPSB société d'ingénierie de procédés spécialisée dans les productions de sucres (ex betteraves, ex céréale,...) et les biotechnologies
- Du fait de la formation et de l'expérience professionnelle de ses dirigeants forte activité avec les Start up
- > Actuellement nous assistons plusieurs Start up dans leur développement industriel :
 - Etude de faisabilité
 - Avant projet sommaire
 - Assistance à la réalisation d'unité pilote et d'unité de démonstration
- > Les développements portent sur :
 - La production de protéines principalement à destination de l'alimentation animale (Fish feed, Pet Food,...)
 - La valorisation de certaines fractions spécifiques vers des marchés avec des débouchés à plus forte valeur ajoutée (Industrie cosmétique, chimie fine,...)
 - Valorisation Food en alimentation humaine (dans l'attente d'un changement de règlementation)
 - Deux business modèles assez différents

INTRODUCTION

Le contexte :

- > 9 milliards d'individus à nourrir d'ici 2050
- Remise en cause de la durabilité de l'approvisionnement en protéine végétale pour l'alimentation animale du fait de la compétition avec usage alimentaire direct
- Résidus et coproduits des industries agroalimentaires et de l'agriculture sous valorisés ou éliminés en tant que déchet
- Des quantités importantes de produits alimentaires manufacturés invendus sont éliminées sans être valorisées

Le constat:

- Les insectes sous certaines formes (les larves):
 - ont une croissance rapide
 - sont capables de bioconvertir des quantités importantes de résidus organiques en protéines et matières grasses (Pour 10 kg de nourriture consommée, les insectes produisent 10 à 20 fois plus de protéines que les bovins)
- > Absence de filière industrielle

INTRODUCTION

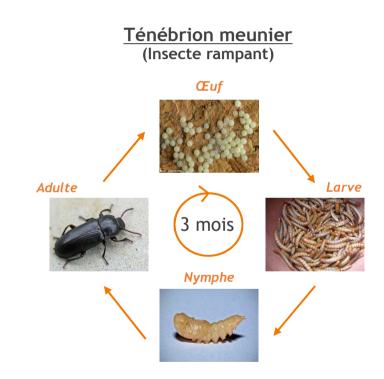
Impact environnemental

Faible impact environnemental de la bioconversion réalisée par les insectes comparé à d'autres « Bioconverter »

Rejets de gaz à effet de serre (rejets maximaux, en g par kg de masse corporelle par jour) CO2: 7.08 CO2: 27.96 CO2: 0.09 CO2: 6.39 CH4: 0.283 CH4: 0.098 CH4: 0.017 CH4: 0.002 N20: Non disponible N20:85.6 N20: 21.5 N20: 0.23 NH3:170 NH3:75 NH3: 7.05 NH3:8.8 grillon bœuf porc criquet INSECTES.COM

LES CONTRAINTES DU SCALE-UP DE LA PRODUCTION D'INSECTES

1. VERROUS TECHNOLOGIQUES LIEES A LA PRODUCTION DES INSECTES


1. CONTRAINTES TECHNOLOGIQUES LIÉES À LA PRODUCTION DES INSECTES

- « Cycle de vie » des insectes
- Exemples de 2 insectes

Stade larvaire: 10-20 jours

Stade larvaire: 50-60 jours

1. CONTRAINTES TECHNOLOGIQUES LIÉES À LA PRODUCTION DES INSECTES

Stade larvaire

- Phase de grossissement
 - Etape durant laquelle les larves grossissent et stockent protéines et huile
 - Milieu d'engraissement :
 - Formule = f (Type d'insecte) = « Secret de fabrication »
 - Facteur limitant : taux de matière sèche à t=0 et au cours de la phase de grossissement
 - Problématiques
 - Maîtrise des conditions ambiantes
 - Maîtrise de la qualité du substrat
 - Choix de la matière première

Contraintes

- Durée de grossissement des larves plus ou moins longue
 - Stockage des larves en gros volumes (bioréacteur) pendant la phase de grossissement
- Problématiques :
 - Echauffement dans la masse augmentant le taux de mortalité (température, taux d'humidité)
- Solutions:
 - Brasser le mélange substrat / larves
 - Faire circuler de l'air à travers la couche de larves pour les refroidir et les oxygéner
 - => Solutions coûteuses
- => Une solution : travailler avec de faible hauteur de couches à l'instar de ce qui se fait pour la fermentation en milieu solide (FMS)

1. CONTRAINTES TECHNOLOGIQUES LIÉES À LA PRODUCTION DES INSECTES

Stade adulte

- Phase de reproduction
 - Etape durant laquelle les adultes se reproduisent et pondent des œufs
- Problématiques
 - Faire pondre les adultes dans un endroit propice à la récupération ultérieure des œufs
 - Détermination/Gestion de la quantité d'œuf produite pour une bonne maîtrise de l'ensemencement du substrat en phase de grossissement (Pérennité de l'élevage et conservation des ratios de production

Contraintes

- Insecte volant ou rampant
 - Nécessité de développer un environnement d'élevage adapté au type d'insecte : Volières, bacs, ...
- Ponte des œufs

	Insecte volant	Insecte rampant
Dépôt des œufs	 Endroit sombre et exigu Odeur de nourriture en décomposition 	Dans la nourriture

Récupération des œufs compte tenu de leur fragilité

1. CONTRAINTES TECHNOLOGIQUES LIÉES À LA PROD<u>UCTION</u> DES INSECTES

Conditions ambiantes requises pendant l'élevage : stade adulte et stade larvaire

Phase de développement	Température (°C)	Humidité (%HR)
Larves	25 - 27	50 - 60
Pupes / Nymphes	23 - 27	
Adultes	30	60 - 70
Eclosion des œufs		

- > Travailler sous atmosphère contrôlée en température et hygrométrie
- Eliminer les calories produites (Respiration, Digestion, Frottement) # 6 à 180 J/h.g de larve en fonction du type d'installation
- Renouveler l'air dans les enceintes d'élevage (jusqu'à 20.10⁵ m³/h pour certaines installations en cours d'étude)
- Nécessité de dimensionner de grosses centrales de traitement d'air (CAPEX, OPEX)

LES CONTRAINTES DU SCALE-UP DE LA PRODUCTION D'INSECTES

3. CONTRAINTES REGLEMENTAIRES

2. CONTRAINTES REGLEMENTAIRES LIÉES À LA TRANSF<u>ORMA</u>TION DES INSECTES

Réglementation ICPE

Trois rubriques concernées:

- Rubrique 2150 « Verminières, élevage de larves de mouches, asticots »
- Classement à Autorisation
- Rubrique 2221-B-2 « Préparation ou conservation de produits alimentaires d'origine animale, par découpage, cuisson, appertisation, surgélation, congélation, lyophilisation, déshydratation, salage, séchage, saurage, enfumage, etc., à l'exclusion des produits issus du lait et des corps gras, mais y compris les aliments pour les animaux de compagnie »
 - Séchage et broyage des protéines d'insectes
- Classement à Déclaration : Traitement de 500 kg/j à 2 T/j de larves Classement à Enregistrement : Traitement supérieur à 2 T/j de larves
- <u>Rubrique 2240-B-2</u> « Extraction ou traitement des huiles végétales, huiles animales, corps gras, fabrication des acides stéariques, palmitiques et oléiques, à l'exclusion de l'extraction des huiles essentielles des plantes aromatiques »
 - Extraction de l'huile des larves
- Classement à Déclaration : Production de 200 kg/j à 10 T/j d'huile
 - Classement à Enregistrement : Production supérieure à 10 T/j d'huile

LES CONTRAINTES DU SCALE-UP DE LA PRODUCTION D'INSECTES

3. VERROUS TECHNOLOGIQUES LIEES AU FRACTIONNEMENT DE LA « BIOMASSE INSECTE »

3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT <u>DE LA BIOMASSE INSECTES</u>

Principales étapes des procédés de fractionnement

 Plusieurs schémas de fractionnement possibles en fonction des fractions recherchées et du niveau de pureté attendu de chaque fraction.

⇒ Globalement:

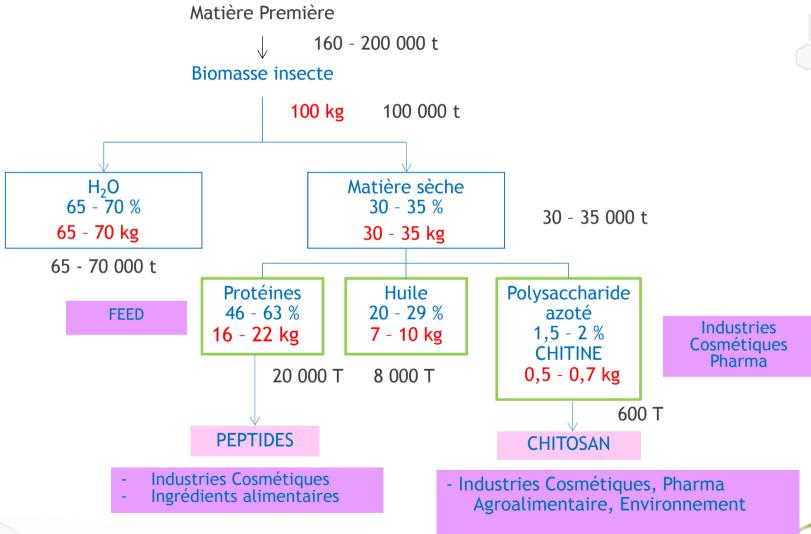
1ère étape : Disposer de larves propres exemptes de leur milieu de croissance (Résidus de matière

première et déjection).

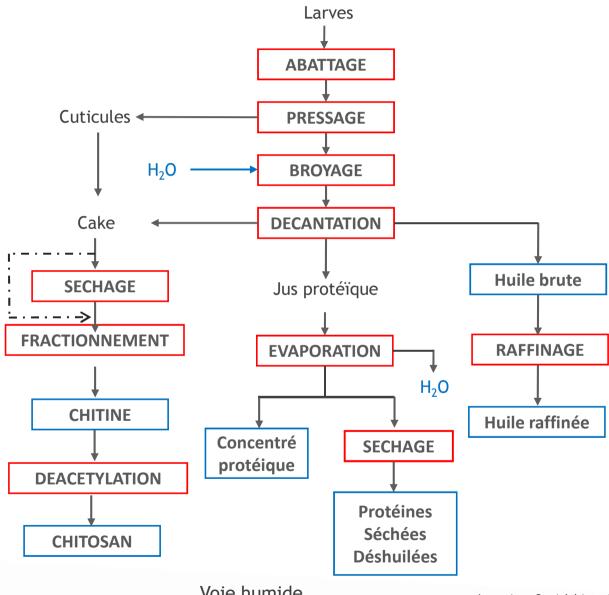
2ème étape : Abatage afin de disposer d'une biomasse inerte.

3ème étape : Elimination de la fraction lipidique (2 voies possibles : une voie sèche / une voie humide).

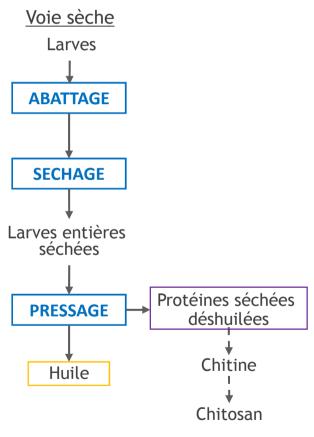
4ème étape : Fractionnement de la matière première delipidée.

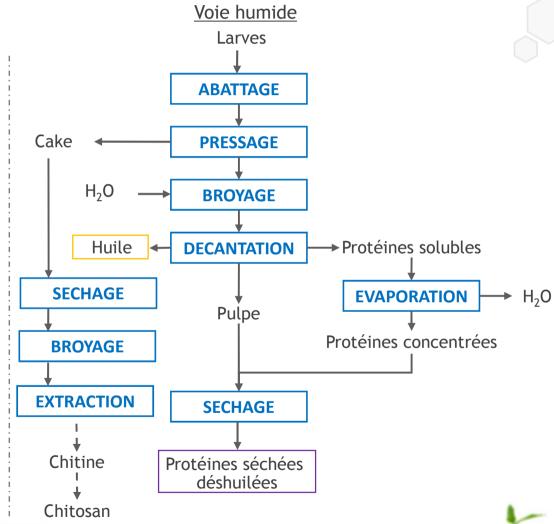


3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT <u>DE LA BIOMASSE INSECTES</u>


Composition de la biomasse insecte

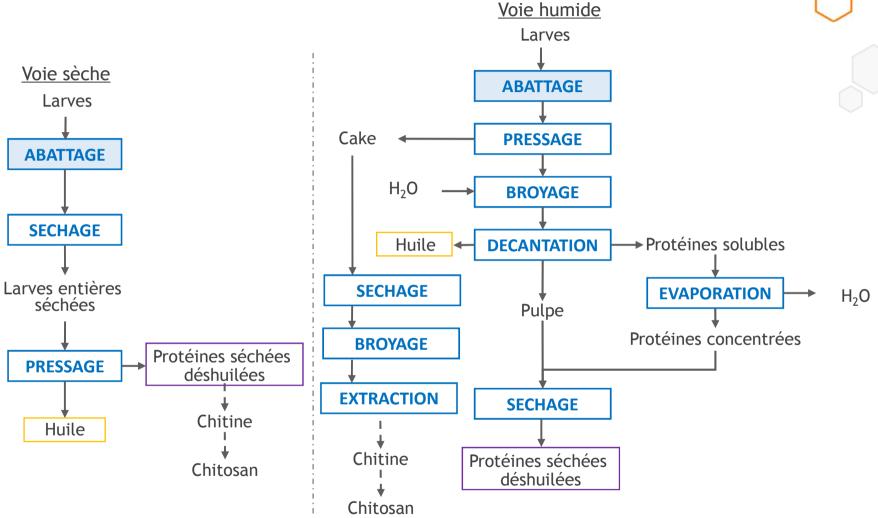
3. CONTRAINTES TECHNOLOGIQUES LIEES AU FRACTIONNEMENT DE LA BIOMASSE INSECTES



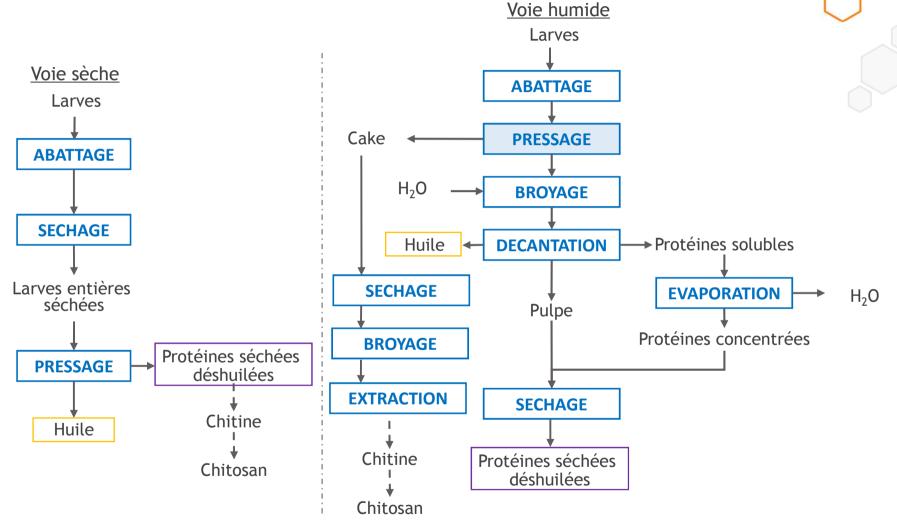

3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT DE LA BIOMASSE INSECTES

Schémas de fractionnement

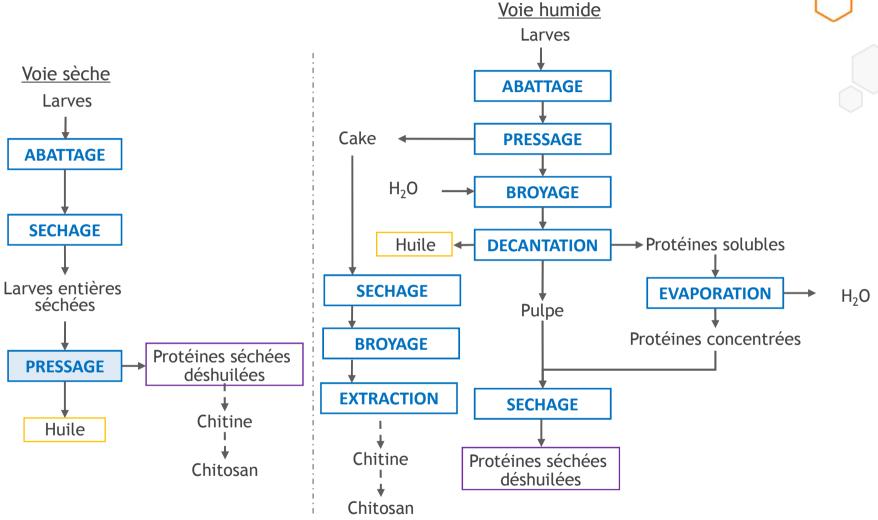
2 voies de transformation



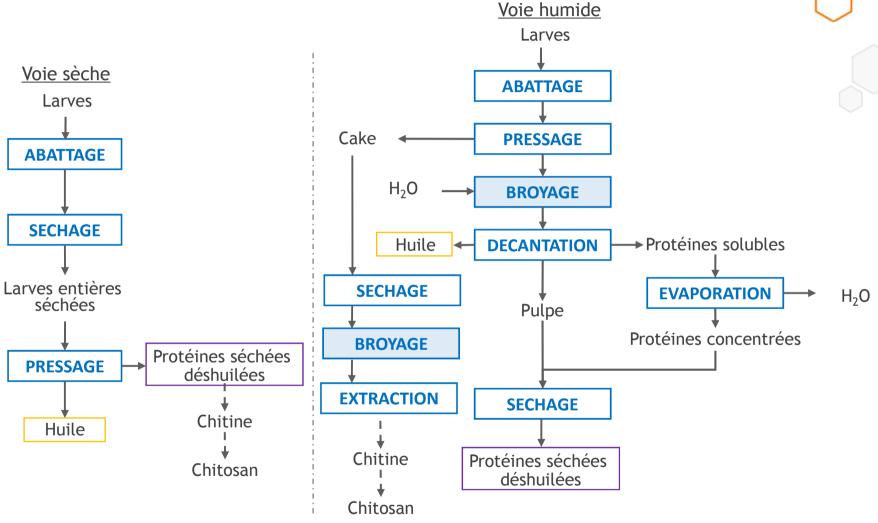
3. CONTRAINTES TECHNOLOGIQUES LIEES AU


- Abattage : Contraintes réglementaires Abattage « éthique » de l'insecte (Traitement thermique en étuve; Blanchiment (traitement vapeur); Micro-ondes; ...)
- Choix de la technologie en fonction du procédé Aval

FRACTIONNEMENT DE LA BIOMASSE INSECTES


Pressage des larves entières « fraiches » : Consistance de la matière à presser (viscocité)

3. CONTRAINTES TECHNOLOGIQUES LIEES AU


- Pressage des larves entières séchées:
 - Réussir à extraire la majorité de l'huile des larves, en utilisant une presse employée pour l'extraction d'huile de graines végétales
 - Paramètre important : température de traitement

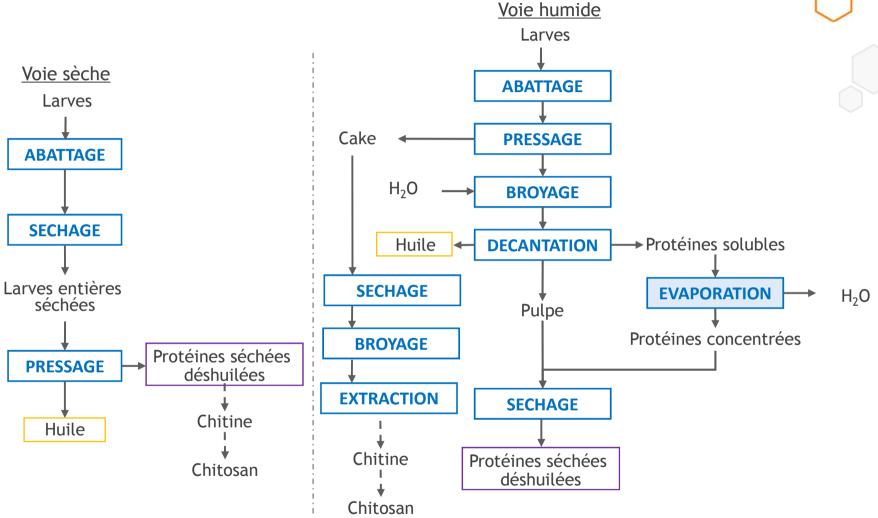
3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT DE LA BIOMASSE INSECTES

Broyage :

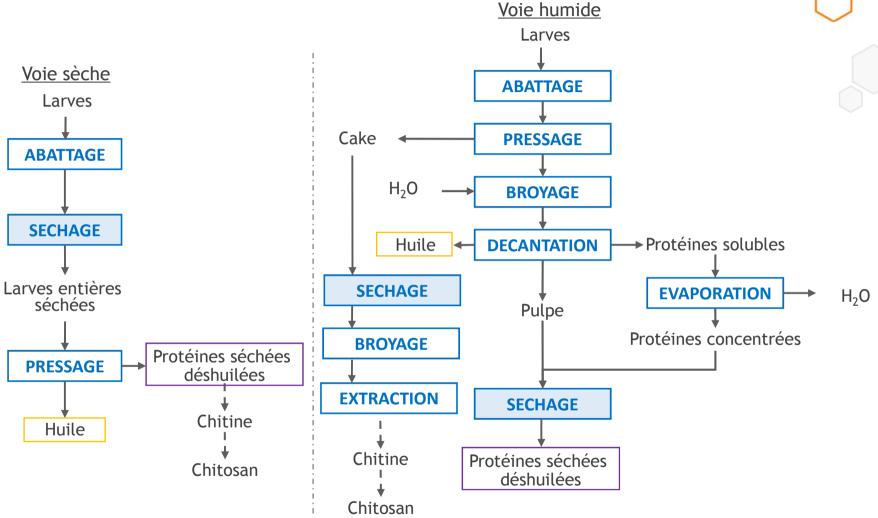
Amélioration de l'extraction par ajout d'eau, eau à évaporer dans la suite du procédé

3. CONTRAINTES TECHNOLOGIQUES LIEES AU-FRACTIONNEMENT DE LA BIOMASSE INSECTES

• <u>Décantation</u>:


- Décantation 3 phases, pas de problématique particulière. Choix du bon fabriquant
- Travailler sur les températures de traitement

3. CONTRAINTES TECHNOLOGIQUES LIEES AUTRACTIONNEMENT DE LA BIOMASSE INSECTES


- <u>Evaporation</u>: Importante quantité d'eau à évaporer, nécessitant une étape de concentration du jus protéiné avant séchage :
 - Eau intrinsèque de l'insecte
 - Eau ajoutée lors de l'étape de broyage pressage

3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT DE LA BIOMASSE INSECTES

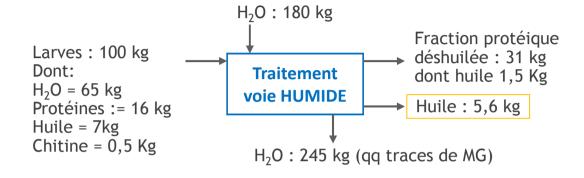
Séchage :

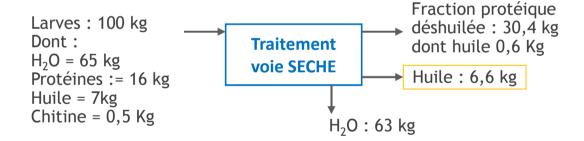
- Voie sèche :Séchage de l'insecte entier -> Barrière à la migration de l'eau : cuticule de la larve
- Quantité d'eau à évaporer importante

3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT <u>DE LA BIOMASSE INSECTES</u>

Problématiques communes aux deux types de procédés

- Nettoyage / sanitation des installations
- Maîtrise de la contamination dès l'étape de broyage
- Maîtrise de l'abattage
- Gestion traitement des effluents liquides (Condensats d'évaporation, eau de lavage,...) et gazeux (Air de renouvellement, dégazage cuves,...)
- Valorisation des coproduits





3. CONTRAINTES TECHNOLOGIQUES LIEES AUFRACTIONNEMENT <u>DE LA BIOMASSE INSECTES</u>

- Fuite de matière grasse dans les effluents dans le procédé par voie humide
- Fraction protéique moins riche en huile en extraction par voie sèche

3. CONTRAINTES TECHNOLOGIQUES LIÉES AU FRACTIONNEMENT DE LA BIOMASSE INSECTES

Voie ultime de l'entoraffinerie : Extraction de la Chitine - Production de Chitosan - Protéines hydrolysée (Peptides)

- La chitine est un des plus importants polysaccharides naturel après la cellulose
- Sources: Exosquelette des arthropodes, paroi cellulaire des champignons, cuticule des Insectes
- Deux types de procédé d'extraction :
 - Extraction par voie chimique
 - Extraction par voie enzymatique
- 1) Extraction par voie chimique
- 3 étapes majeures :
 - Déminéralisation
 - Déprotéinisation
 - Décoloration
- Procédé peu respectueux de l'environnement Température élevée (50 -110 ° C) et durée de traitement longue
- Altération possible du polymère (Dépolymérisation)
- 2) Extraction par voie enzymatique
- Maitrise état de division de la matière nécessaire (broyage)
- ♦ Traitement en milieu dilué (MS ~10 %)
- Quantité d'effluent à traiter importante
- Nécessite d'envisager du recyclage d'eau
- Durée de traitement moins longue

3. CONTRAINTES TECHNOLOGIQUES LIEES AU FRACTIONNEMENT <u>DE LA BIOMASSE INSECTES</u>

Voie ultime de l'entoraffinerie : Extraction de la Chitine - Production de Chitosan - Protéines hydrolysée (Peptides)

Chitosan:

Obtenu par déacétylation de la Chitine.

<u>Désacétylation</u>: Traitement alcalin de la Chitine ou Traitement Enzymatique (chitine déacetylone)

NaOH concentrée de 40 à 60%

Température = 80 ° C

Durée = 10h

Peptides:

Obtenu par hydrolyse enzymatique contrôlée

Recherche de propriété fonctionnelles différentes (solubilité,...)

Amélioration de la digestibilité

LES CONTRAINTES DU SCALE-UP DE LA PRODUCTION D'INSECTES

CONCLUSION

CONCLUSION

- □ Etat des développements industriels :
 - Plusieurs projets à l'étude à des stades de développement très différents.
- □ Points d'attention au niveau technique :
 - Standardisation des substrats de développement des larves (apport en humidité)
 - Maitrise du « biotope »
 - > Elimination des calories pendant la phase de grossissement des larves
 - Valorisation des co produits (Frasse, Huile, ...)
 - > Traitement des effluents (liquides et gazeux)
 - Maitrise des conditions sanitaire (CIP, froid, ...)
 - Attention au cahier des charges bactériologiques produit pour certaines applications CHITINE/CHITOSAN

ADRESSES

IPSB - Avon 44, Avenue de Valvins 77210 Avon - France IPSB - Reims 2, Rue Léon Patoux 51100 Reims - France IPSB - Maroc 71, Avenue Hassan II 20130 Casablanca - Maroc

CONTACT

Email: ipsb@ipsb.fr Tel: +33 (0)1 60 39 72 30 Fax: +33(0)1 60 71 68 52

aurelie.gesnouin@ipsb.fr
franck.launay@ipsb.fr