

DSM Bio-based Products & Services

The role of modern biotechnology in industrial biomass processing. Carbohydrases - examples

> ADEBIOTECH 2014 October Paris, France Theo Verleun - replaced by Francoise Geoffroy

> > **HEALTH • NUTRITION • MATERIALS**

Successful transformation 1902 - 2014

Life Sciences & Materials Sciences

Our mission :Connect our unique competences in; Life Sciences and Materials Sciences, To create solutions to nourish, protect and improve performance for people today and generations to come.

Our core value : sustainability

- Food & Feed
 - Hunger
 - Hidden hunger
- <u>Health</u>
 - Aging world population
 - Food safety & quality
- <u>Climate & Energy</u>
 - Solar, Wind
 - Bio-based fuels
 - Bio-based chemicals.

Renewable raw materials

Facilitate the needs of a growing world population using Biotechnology (enzymes & microbes)

Why focus on the Bio-based Economy

Fact: Demand for Consumer Goods

IENCE. BRIGHTER LIVING.

Fact: Energy Security

The Oil age will end, long before we run out of oil. And while running out, it will become much more expensive. Wind, Solar and Water do not yield -products

Can Biomass be the answer?

Will there be enough Biomass? Biomass Availability 2050 (EJ, ExaJoules 10¹⁸)

- Global energy demand in 2050 is estimated at 600-1040 EJ
- Yearly biomass demand estimate in 2050: 50-250 EJ
- Conservative production capacity estimate 2050 is 200-500 EJ:
 - Reststreams forestry & agriculture: 40-170 EJ
 - Additional forrestry: 60-100 EJ
 - Energycrops from land not used for agriculture (idle): 120 EJ
 - Energycrops on marginal land: 70 EJ
 - Increased agricultural yields: 140 EJ
- Alternative energy sources needed
- Abundant supply for chemicals (<5% of the consumption)

Will there be enough Biomass? Biomass Availability 2050 (EJ, ExaJoules 101

Global energy demand in •

Market demand / forces team creation

Plenty of ideas.....

Market demand / forces team creation

Plenty of ideas......

Emerging value chain *>* partnerships needed

Emerging value chain **→** partnerships needed

POET-DSM Advanced Biofuels

two innovative companies - one shared vision

Project LIBERTY

POET-DSM Advanced Biofuels

two innovative companies - one shared vision

Project LIBERTY

Opening September 3rd in Emmetsburg, Iowa

700 ton Corn-fiber/day - It is not only a scientific achievement it is also an AGRO achievement and most of all a logistics achievement.

Sustainable Polyurethanes

powered by DSM + Roquette

Reverdia Commercial Plant in Italy In operation since late 2013

Biomasses.....

Can Enzymes be the answer?

The function of enzymes

The properties of enzymes:

• Enzymes are biological catalysts. They accelerate a reaction without being consumed itself in the reaction

• Enzymes are proteins, composed of 100 to 1000 amino acids, folded, have an active center, usually with separate binding sites to build up a link to the substrate.

• Due to the protein structure, enzymes themselves are subjected a degradation and therefore an inactivation.

Capabilities of enzymes

Enzymes bring a wide range of processing benefits and ensure cost savings by:

- improving processing efficiency
- reducing production time
- replacing physical and chemical treatments
- reducing energy needs
- using less raw materials

Enzymes for better efficiency

Enzymes for better efficiency

Enzymes for better efficiency

Hydrolysis of Cartboard within 14 days. (links: Control; rechts: 100 ppm MethaPlus

The Industrial Green process

First step

Multiple enzymes, Right enzymes breaking up the biomass Conditions & time are crucial

Second step

Microbes (yeast /bacteria or alike) at work, consuming nutrients and creating products.

Bio-Tech Facilities / Products and Processes

DSM Biogas Products

Cereal based fibers / Glucans-Pentosans

✓ MethaPlus[®] L 100

Fibrous substrates / (hemi-)cellulose

Both are Carbohydrase mixes.

Axiase[™] 100 (cereal as biomass)

type of cereal	B-Glucan [g/kg DM]	Pentosan [g/kg DM]
Barley	107	66
Oat	66	58
Rye	29	87
Wheat	10	66
Triticale	12	90
Maize	12	40

from Dierick 1989; Choct&Annison 1990

B-Glucan (soluble fraction): viscosity 1, degassing 4 Pentosan (soluble fraction): water retention 1, degassing 4

Axiase[™] 100

Plant builder: MT-Energie (F, NG each 2285 m³) Capacity: 625 kW Loading rate: ca. 4,5 [kg oDM/m³ x d]

Axiase[™] 100

- \rightarrow Constant own energy consumption (yellow)
 - \rightarrow Constant energy production (green)

Axiase[™] 100

- ✓ contains complex enzymes-mix which can degrade pectins, beta-glucans, pentosans, hemicellulose and cellulose.
- \checkmark Aspergillus sp. und Trichoderma sp.
- ✓ Developed together with MT-Energie for biogas codigestion processes.
- ✓ 1 MW biogas plant -> 2 kg Axiase per day

Benefits in application:

- Maximise the proportion of triticale in the substance mix
- \checkmark More flexibility in the substrate mix management.
 - risk spreading(harvest/weather)
 - breaking-up the crop rotation
- ✓ Cost benefits through higher flowability
 - better mixing
 - Less technical problems with pumps/mixers

MethaPlus[®] L 100 (valorise waste stream)

Approx. 50% of digestate holds biogas potential

MethaPlus[®] L 100 (better efficiency)

\rightarrow Very clear effect of MethaPlus with the digestate

MethaPlus[®]

MethaPlus® L 100

	R1	E1	E2	E3	
Spec. energy production [kWh/t oDM]	1256	1328	1356	1410	
%-Differenz zu R1 [%]	0	<u>+6</u>	<u>+8</u>	<u>+12</u>	

Steigerung der Energieausbeute durch die Applikation von MethaPlus

Biogas plant Trial

MethaPlus[®]

MethaPlus® L 100

A way to save money is less biomass going into plant

MethaPlus® L 100

MethaPlus® L 100

- ✓ Liquid Trichoderma mix of ca. 30 different enzyme activities for the degradation of cellulose derived biomass.
- ✓ Dosage for 1 MW -> 2 kg / day, (0,1 kg MP/to oDM)

Benefit in application:

- \checkmark increasing the substrate degradation
- ✓ contains highly active enzymes optimized for BioGas operations
- $\checkmark\,$ enables the acceleration of the biogas process
- ✓ uses additional substrate shares, that remains otherwise unused in the biogas process
- $\checkmark\,$ decrease the viscosity of the fermenter content

More than 40 Full dataset of biogas plants and DSM enzymes

MethaPlus[®]

MethaPlus® L 100

Economic results:

- 12 % increase of spec. energy production is translated to reduction of 1,5 t oDM/d = 4,5 t corn silage* $x \in 30-45/t$ on = 160 \in/day

- Enzyme costs 70 €/ day (2kg * 35€/kg)

> Savings in range of 25000€ - 50000/year. On a 1MW installation.

Additional benefits,...not quantified

- Iower digestate output(-3,4 m³/d), saving in disposal/storage costs
- Saving of cultivated land (ca. 30 ha)
- Reduced agitation energy required
- Less risks on floating layers and other blockage hick-ups.

MethaPlus[®] L 100/ Axiase[™] 100 (future)

Conclusions

- Biobased products have a clear role in (near) future.
- <u>Cooperation</u> throughout the value chain is a MUST.
- Enzymes & microbes will play a crucial role in the required industrial processes using biomass (wastestreams) from the land.

The Bio-Based Economy offers huge opportunities for Science / Agriculture and (Bio-)Technology

BRIGHT SCIENCE. BRIGHTER LIVING.™

Thanks for your attention

For Questions: theo.verleun@dsm.com