

Valorisation des coproduits de la pêche : la réussite d'une collaboration entre Entreprise et Université

The use of marine by-products to develop innovative ingredients: a successful collaboration between SME and University

- 1: ICV, Equipe ProBioGEM, Université de Lille, Villeneuve d'Ascq
- 2 : Société COPALIS Boulogne sur Mer
- 2: ICV, Equipe QSA, Université d'Artois, Lens.
- 4 : Laboratoire de Stress Périnatal, Université de Lille, Villeneuve d'Ascq

Rozenn RAVALLEC¹ et Luce SERGENT²

Benoit CUDENNEC¹, Dorothée DOMENGER¹, Barbara DERACINOIS¹, Pascal DHULSTER¹, Jean LESAGE⁴, Laurence GUIMAS² et Christophe FLAHAUT²

COPALIS is at the heart of the marine resource Located in the 1st European centre for the transformation, commercialization and distribution of seafood products

A few figures...

- Cooperative organization: 100 shareholders are Copalis raw material suppliers
- √ 75 employees
- ✓ Turnover: 22,000 k€
- Created in 1960 to add value to fish by-products: production of fishmeal

From fishmeal to high added-value ingredients

- ✓ Observation in the 60s: how to better use the protein resources to meet the increasing need in protein?
 - ⇒ Protein solubilization to reach protein bound to non-protein substances (lipids, carbohydrates, ...)
- Development of enzymatic hydrolysis process on an industrial scale: patented process
 - ⇒ 1968: launch of a patented fish protein hydrolysate CPSP® Increased nutritional value of protein from fish by-products: +15 to 35%

A demanding raw material

✓ Filleting by-products:

- √ 40 000 T of by-products are generated in Boulogne/mer:
 - ✓ Collected by Copalis dedicated service (5 trucks)
 - ✓ Feed raw material in stainless steel tank
 - ✓ Food raw material in refrigerated container (same conditions as fish fillets transportation)

General context:

- Hippocrates: Let food be thy medicine and medicine be thy food
- Molecules from natural origin
- Need to upgrade the 'waste' => by-products

General context:

- Hippocrates: Let food be thy medicine and medicine be thy food
- Molecules from natural origin
- Need to upgrade the 'waste' => byproducts

Scientific context:

- Growing number of publications on bioactive peptides
- Peptides from Milk (Meisel and Fitzgerald, 2000. Br. J. Nutr.)
- ■Isolation, characterization (Ngo et al., 2012. Int. J. Biol. Macromol.)
- Notion of cryptide (Li-Chan, 2015. Curr. Opin. Food Sci.)
- ■Resistance to gastro intestinal digestion (GI)=> BIOLOGICAL ACTIVITIES

General context:

- Hippocrates: Let food be thy medicine and medicine be thy food
- Molecules from natural origin
- Need to upgrade the 'waste' => byproducts

Scientific context:

- Growing number of publications on bioactive peptides
- ■Peptides from Milk (Meisel and Fitzgerald, 2000. Br. J. Nutr.)
- ■Isolation, characterization (Ngo et al., 2012. Int. J. Biol. Macromol.)
- Notion of cryptide (Li-Chan, 2015. Curr. Opin. Food Sci.)
- •Resistance to gastro intestinal digestion (GI)=> BIOLOGICAL ACTIVITIES

Project and network context:

Europeen (Hydrofish, Seafood)

Clean processes and natural substances for food and nutrition

Biotechnologies and eco-design processes for clean transformation and sustainable development of agricultural resources.

Upgrading of food proteins by enzymatic methods

Technical Platform: BIOLOGICAL ACTIVITIES STUDIED

- Antihypertensive (functional ingredients)
- Anti DPP-IV (functional ingredients : T2DM)
- Opioïds (functional ingredients : anti-stress, metabolic syndrom)
- Regulation of intestinal hormones secretion (functional ingredients: obesity and associated symptoms)
- Antioxydants (functional ingredients : food conservation, healthy food)
- Anti-inflammatory
- Cytotoxicity
- ...

SEQUENCE => BIOLOGICAL ACTIVITIES => PHYSIOLOGICAL MECANISM

- → Development of new methodologies
- → Characterisation of the biological activities (identification and metabolic pathway)
- > Numerous models of cells and animals

HYDROFISH (1997 to 2000 « The search of biologically active compounds in hydrolysates of fish and crustaceans) => reproductibilty of the peptidic population

=> SEAFOODPLUS Project 2004-2008 : more than 18 countries and 67 partners

=> Evidence of *in vivo* satietogen effect in rats of fish hydrolysates produce at industrial scale

H1: Siki (dogfish) hydrolysate (C. squamosus)

H2: Saithe fermented hydrolysate (P. virens)

H3: commercial product Nutripeptin

Cholecystokinin (CCK)

Produced by **I cells** (duodenum) in response to lipids and **proteins**.

Promotes **satiation**: increase gastric secretion, decrease gastric emptying, induces satiety feeling by vagal afferents

Ingestion orogastric of peptide fractions

4 groups of 8 rats: control T(0.5 ml distilled water) and 3 hydrolysates H (50 mg/0.5 ml)

First step: 21 days

Measurement of the food intake and of the body weight

Second step: after 24 hrs of fasting

Measurement of the food intake and of plasmatic molecules

H1: Siki (dogfish) hydrolysate (C. squamosus)

H2: Saithe fermented hydrolysate (P. virens)

H3: commercial product Nutripeptin

H1: Siki (dogfish) hydrolysate (C. squamosus)

H2: Saithe fermented hydrolysate (P. virens)

H3: commercial product Nutripeptin

Measurement of the food intake and of the body weight (3 weeks)

With H2:

- less body weight after 21 days of stuffing
- less food intake during the 3 weeks

H1: Siki (dogfish) hydrolysate (C. squamosus)

H2: Saithe fermented hydrolysate (P. virens)

H3: commercial product Nutripeptin

Measurement of the food intake and of the body weight (3 weeks)

With H2:

- less body weight after 21 days of stuffing
- less food intake during the 3 weeks

Measurement of the food intake and of plasmatic molecules

With H2:

- tendency to reduce food intake and glycemia
- high level of CCK

H1: Siki (dogfish) hydrolysate (C. squamosus)

H2: Saithe fermented hydrolysate (P. virens)

H3: commercial product Nutripeptin

Measurement of the food intake and of the body weight

With H2:

- less body weight after 21 days of stuffing
- less food intake during the 3 weeks

Plasma glucose level after 1 h of food intake

Measurement of the food intake and of plasmatic molecules

From an academic point of view:

- 3 publications (with one book chapter)
- several communication in international congress (WEFTA 2007, MIS 2011)
- Development of innovative techniques

JOURNAL OF FUNCTIONAL FOODS 4 (2012) 767-775

Available at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jff

Received: 22 January 2010 Revised: 2

Revised: 23 April 2010 Accepted: 26 April 2010

Published online in Wiley Interscience: 3 June 2010

(www.interscience.wiley.com) DOI 10.1002/jsfa.4020

Effect of daily gavage with a collagen hydrolysate containing calcitonin gene-related peptide (CGRP)-like molecules on plasma CGRP-levels in rats

Oscar Martínez-Alvarez^{a,*}, Rozenn Ravallec^b, Benoit Cudennec^b, Laurence Guimas^c, Charles Delannoy^c, Martine Fouchereau-Peron^{d, 1}

^aInstitute of Food Science, Technology and Nutrition (ICTAN-CSIC)², José Antonio Novais 10, 28040 Madrid, Spain

^bProBioGEM - Polytech'Lille - IUTA - EA 1026, 59655 Villeneuve d'Ascq Cedex, France

COPALIS, BP 239, 62203 Boulogne-sur-Mer Cedex, France

dUMR BOREA, MNHN/CNRS 7208/IRD 207/UPMC, Marine Biology Station, BP 225 29182 Concarneau Cedex, France

Improving Seafood Products for the Consumer

A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition

2008, Pages 363-398

18 – Mild processing techniques and development of functional marine protein and peptide ingredients

Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties

Laurent Picot, ** Rozenn Ravallec, b Martine Fouchereau-Péron, c Laurent Vandanjon, de Pascal Jaouen, d Maryse Chaplain-Derouiniot, d Fabienne Guérard, f Aurélie Chabeaud, f Yves LeGal, c Oscar Martinez Alvarez, c, g Jean-Pascal Bergé, b Jean-Marie Piot, a Irineu Batista, carla Pires, Gudjon Thorkelsson, k Charles Delannoy, Greta Jakobsen, m Inez Johansson and Patrick Bourseaud, e

Fish, a source of active ingredients

From fish by-products to the international market of nutricsometics

- Increasingly educated consumers
- Growing competition with actives of different origin
 - Increasingly demanding regulation

New reasearch programm PepSeaNov:

Characterisation of active peptides from fish by-products and development of new ingredients for human and animal nutrition based on innovative technics

A project led by Copalis and including 5 partners including Institut Charles Viollette

Overall budget: 1 944 117,09 €

Duration: 36 months

ICV

Anti stress activity and peptide identification

Success story of 20 years of collaboration

industry and academic research lab

Institut Charles VIOLLETTE

Christophe Flahaut
Barbara Deracinois
Dorothée Domenger
Benoit Cudennec
Pascal Dhulster
Rozenn Ravallec

Rozenn.Ravallec@univ-lille1.fr l.sergent@copalis.fr

COPALIS

Luce Sergent
Laurence Guimas
Charles Delannoy

And next.....

EYOLUTION ...

Merci de votre attention!

