

Peptide stabilization by side-chain to side-chain cyclization

Maud Larregola and Anna-Maria Papini

PeptLab@UCP Platform Laboratory of Chemical Biology University of Cergy-Pontoise

Colloque Adebiotech – 24 septembre 2015

Opportunities and Weaknesses in PeptLab **Developing Peptide Drugs**

Opportunities

- Readily available leads
 - Synthesis and SAR are straightforward and rapid
- A large number of diverse unnatural amino acids available to increase stability
- Can access larger binding surface area than small molecules
 - Well suited for extracellular protein-protein interactions as GPCR agonist and antagonists
- Possible to achieve high potency (sub-nanomolar) and efficacy
- High selectivity and low toxicity
- Weaknesses
 - Peptide Therapeutics: It is all in the Delivery
 - High clearance: requires extensive optimization, fusion/conjugation and/or formulation

W. Danho, PIPS 2014, University of Cergy-Pontoise

Strategies to Increase Peptide Half-Life

- Lipidation
 - Liraglutide (phase 3/registration) (Novo Nordisk)
- Pegylation
 - Hematide (phase 3, renal failure) (Affymax)
- Albumin Conjugation/Complexation
 - Albumin binding peptides (Genentech)
 - Domain Anti-albumin fusions (Domantis, GSK)
 - Albumin fusion proteins (Human Genome Sciences, GSK)
 - Covalent attachment (CJC-1411, Conjuchem)
- Antibody Conjugation/Complexation
 - Fc-fusions (Mimetibody, Centocor)
 - Ab-covalent attachment
 - Anti-digoxigen antibodies (Roche)

W. Danho, PIPS 2014, University of Cergy-Pontoise

UNIVERSITÉ de Cergy-Pontoise

Cyclization: Learnings from Nature

<u>Cyclosporin A</u>: %F = 29

- orally bioavailable marketed cyclic peptide (11 aa)
- intramolecular H-bonds reduce desolvation penalty when leaving water

• Many intramolecular side-chain to side-chain cycles

W. Danho, PIPS 2014, University of Cergy-Pontoise

UNIVERSITÉ de Cergy-Pontoise

Side-chain to side-chain cyclization

- Rigidification reduces susceptibility to proteolytic enzymes thus increasing the metabolic stability in vitro and more significantly in vivo
- Restriction to active conformation in cyclic peptides can give superpotent analogues in matched cases
- Basis for receptor selectivity: often different receptors bind the same flexible substrate in different conformations

Cyclization types

carbon-carbon bridge by Ring Closing Metathesis

Starting material:

unnatural amino acids: allyglycine

Cyclization:

Presence of metal (Grubbs catalysts)

Dicarba-analogs of octreotide

- octreotide: octapeptide analog of the disulfide-bridged somatostatine hormone
- cell growth inhibitor in a few cancer types and carrier of radionuclides

Keeping pharmacophore region and type II' β-turn conformation

Increased stability (more than 30h in human serum) Possible labelling with ^{99m}Tc and ¹⁸⁸Re (no disulfide cleavage in reducing medium)

> Papini *et al.*, Letters in Organic Chemistry, **2005**, 2 No.3, 274-279. Papini *et al.*, J. Med. Chem., **2008**, 51, 512-520. Papini *et al.*, J. Med. Chem., **2010**, 53, 6188-6197.

Another type of carbon-carbon bridge: 1,3-butadiyne

L-Pra: L-Propargylglycine H₂N соон

- Glaser oxidative coupling = a click reaction never explored to constrain peptide backbone
- catalyzed by copper(I) salt in the presence of oxygen (micro-wave assisted reaction)
- the diyne tether combines high rigidity and limited occupied space

Auberger N., Di Pisa M., Larregola M. et al., Bioorg.Med.Chem. (2014) 22(24)

β-turn stabilization

- including the minimal epitope RNGH for antibody detection in Multiple Sclerosis
- disulfide bridged hexapeptide / diyne bridged hexa or octapeptides
- NMR conformational analysis in water:

Ac-Cys-Arg-Asn-Gly-His-Cys-NH₂: l' β-turn centered on Asn-Gly

Ac-N-CH₂-CO-Arg-Asn-Gly-His-N-CH₂-CONH₂: Ι β-turn centered on Arg-Asn

Ac-NH-CH-CO-Arg-Asn-Gly-His-NH-CH-CONH₂: no turn stabilization for the hexapeptide but...

Auberger N., Di Pisa M., Larregola M. et al., Bioorg.Med.Chem. (2014) 22(24)

- Diyne bridged cyclic peptides allow stabilization of various β-turn structures in water
- Optimization of on-resin Glaser oxidative coupling: libraries of stable constrained butadiyne peptides can be generated

Auberger N., Di Pisa M., Larregola M. et al., Bioorg.Med.Chem. (2014) 22(24)

α -helix stabilization

- PTH = 84-aa hormone increasing Ca²⁺ concentration in blood
- PTHrP = 139-173 aa hormone causing humoral hypercalcemia of malignancy
- N-terminal portion essential for interaction with PTHR1 receptor
- Chorev *et al.* demonstrated that an α -helical motif is essential for the bioactive conformation:

Asp³⁰

Lys²⁶

 $[Lys^{13}(\&^{1}), Asp^{17}(\&^{2}), Tyr^{34}]hPTHrP(7-34)NH_{2}$ a potent PTHR1 antagonist containing an extended and stabilized α -helical conformation increasing efficiently peptide interactions C

Schievano E.; Rosenblatt M.; Chorev M.; Peggion E. *J. Peptide Sci.* **1999**, *5*, 330-337 Bisello A.; Nakamoto C.; Roseblatt M.; Chorev M.; *Am. Chem. Soc.* **1997**, *36*, 3293-3299 Mierke D.F.; Bisello A.; Mammi S.; Peggion E.; Chorev M.; *Am. Chem. Soc.* **1997**, *36*, 10372-10383 Maretto S.; Rosenblatt M.; Chorev M.; Mierke D.F.; *Am. Chem. Soc.* **1997**, *36*, 3300-3307

α-helix stabilization

• NMR studies of Ac-hPTHrP(11-19)NH₂ derived cyclopeptides in water:HFA

- α-helical structures in the cyclic part of the molecules
- slight difference of the backbone arrangement but common spatial orientation of side-chains

Papini et al., J. Org. Chem. (2008) 73, 5663

UNIVERSITÉ de Cergy-Pontoise Unnatural amino acids for various azidoalkynyl intramolecular peptide cyclization

α -helix stabilization

• Variation in the size of the triazol-containing bridge, the location and orientation of the triazol in the bridge :

• NMR studies of Ac-hPTHrP(11-19)NH₂ derived cyclopeptides in water:HFA

Papini et al., Eur. J. Org. Chem. 2010, 446-457

PeptLab@UCP platform

- Created thanks to ANR chaire d'excellence Pepkit 2009-2014
- in Neuville-Université (RER A), Cergy-Pontoise
- Missions:
 - ✓ research, development or expertise services for industries or academics
 - ✓ Scientific equipment provision
 - Training courses in peptide synthesis

Equipment

Peptide synthesis

Biotage SyroWave[™]

Biotage Syro II

Purification/ Characterisation

Autopurifier HPLC Waters 2767

UPLC-MS Waters Acquity

Equipment

Peptide-protein interaction analysis

TECAN (ELISA)

Surface acoustic wave SAW intruments SamX

Microcalorimetry GE Healthcare ITC200

PEPTLAB Plateforme

Design, Synthesis, Purification and Characterisation of peptides and proteins

Contacts

Scientific consultant Prof. Anna-Maria Papini, PhD Tél. : +33 6 65 65 16 68

Technical consultant

Olivier Monasson, PhD Tél. : +33 1 34 25 70 68

peptlab@u-cergy.fr

Université de Cergy-Pontoise Plateforme Peptlab@ucp Site de Neuville 5 mail Gay-Lussac Neuville-sur-Oise 95031 Cergy-Pontoise cedex France

www.peptlab.eu