

Etudier in situ l'agrégation de protéines: intérêts et limites des méthodes de diffusion de rayonnement

Christophe Tribet

Pôle de Chimie Biophysique, Dpt Chimie, Ecole Normale Supérieure, Paris

Christophe.tribet@ens.fr

Pôle de Chimie Biophysique

- From chemistry toward biology
 - Molecular "tools" coupled with biological systems (Chemical Biology/Biophysics)
 - **Remote**, non-toxic **stimuli** (light, ΔT , magnetic)
- From biology toward chemistry
 - o Bio-inspired functions,
 - o Genetically encoded constructs (fluorogens, particles)

Pôle de Chimie Biophysique Manipulation of proteins in complex environments

microtubule

Pôle de Chimie Biophysique Manipulation of proteins in complex environments

Remote control of protein/peptide presentation:

⇒ Refolding of IMPs, soluble enzymes, scFv
⇒ Stability of IgG

Stability/aggregation issues of proteins in stressfull environment

From Amin et al. Current Opin. Coll. Interf. Sci., 2014

diversity of aggregation routes

Influence of additives , of interfaces, external stresses ...

in situ characterization of protein

environments?

association/aggregation in complex

Scattering techniques to assess aggregation

Highest sensitivity to aggregates

Common drawbacks attributed to (light) scattering methods

- « Although the sensitivity of [LS to] detect aggregates is unsurpassed, quantification is not possible » .. [Den Engelman et al. Pharm. Res. 2011, 28, 920-933] »

- « very sensitive to high Mw particles » = difficult to quantify size distribution (Chaudhuri et al., AAPS journal 2014)

- « requires filtration, biasing from dust or polydispersity » A. Pluen, Trends Biotechnol 2013, 31(8), 447-

-« signal depends on particle morphology and (unknown) refractivev index » « only usefull when paired to size-selective separation techniques... » (Ripple et al., J pharma sci, 2012)

- « high concentration may lead to [bias]» (H Samra F. He, Molecular Pharma 2012)

Practical advantages and drawbacks

Pros:

- small amount (2-20 μL , 0.1-100 g/L)
 - non invasive, label-free
 - fast (< 10s- 2 min. ; fastest SAXS = ms)
 - amenable to high throughput instruments
 - broad size range (< nm microns)
 - viscosity measurement (DLS)

Cons:

- fitration required for light scattering, ... but not in SAXS
 - estimates of % aggregated (specific cases = large & solid-like clusters)
 - do not discriminate proteins from dust, bubbles, dropplets...

What can be quantified ?

shape, size of monomer or oligomer proteins interactions +/- additives characteristic aggregation rates kinetics, shape & size of clusters \longleftrightarrow

 \longleftrightarrow

 \longleftrightarrow

Relation to stability

elementary «bricks» of dense phases
phase transition vs metastability
intrinsic stability index
class of aggregation pathway

Light and X-ray scattering to assess in situ the stability of proteins

Outline:

1) SAXS characteristic features of monomers / oligomers (radius, shape, interactions)

protein shape and radius (IgG, proteins in 2-phase systems)

protein-protein interactions vs solubility

2) LS characterisations of growth rate of protein clusters

interface-born aggregates

kinetic stability index

efficiency of chaperones

Light & X-ray scattering

STATIC (average) structure of protein (SAXS, SANS), or of aggregates (SAXS, light)

interpretation depends on the value of q.R (>>1 or <1)

SAXS for characterization of structures & protein-protein interactions

SAXS as internal structure assessment

check the absence of obvious distorsions N.B.: average over the whole population

SAXS as internal structure assessment

Ab-initio reconstitutions

(Panitumumab)

Mosbaek et al., Pharma Res. 2012, 29, 2225

SAXS : structure assessment in concentrated phases

20 µm

Lactoferrin + β -lactoglobulin 1:1 mol/mol, pH 6

macro-heterogeneous dispersions (e.g. coacervates)

From C. Schmitt et al., Soft Matter 2014

Fast assessment of size in dilute solutions

Fast size assessment of complex assemblies

complexes between proteins and stabilizing additives

Gohon et al, Biophys J., 2008

Interactions in <u>concentrated</u> IgG1 solutions

<u>Average</u> interaction determined by light scattering (B₂) predicts solubility

 $q = 4\pi n/\lambda \cdot sin(\theta/2) << 1/R_{prot}$

 $K = \frac{4\pi^2 n_0^2 (dn/dc)^2}{N \cdot \lambda^4}.$

Light scattering : solubility vs B₂

Debye plots for lysozyme vs NaCl crystallization slot: -0.8 x 10-4 > A2 > -8.0 x 10-4 wilson et al. J. crystal Growth (1999), 196, 424-433

Solubility vs B_2 in solutions of IgGs

R. A Lewus et al., Biotechnol. Prog. 2015, 31(1), 268

Dynamic light scattering for robust, faster characterisations

Static scattering drawback:

average contribution of any particle = contributions from dust, bubbles sensitivity to optics (cell wall, centering, etc..) = moving sampling difficult lack indentification of multimodal populations

Dynamic analysis: robust to static optical « defects » radius-based discrimination of populations

Virial coeff predicts phases separation of IgG1

G.Benedek et al. J Chem. Phys 2013

Light and X-ray scattering to assess in situ the stability of proteins

Outline:

1) « monomer » characteristic features

protein shape and radius (IgG, protein in 2-phase systems)

protein-protein interactions vs solubility

2) Characterisations of growth rate of protein clusters

interfacial-born aggregates

kinetic stability index

efficiency of chaperones

Light scattering : <Mw> , <R>, B₂

- structural informations on aggregates larger than $\sim \lambda/10$ (fractal dimension)
- average characteristic molar mass (from monomer to clusters)

weight concentration $K.c/R_{g} = Kc \frac{I_{0}}{Ir^{2}} = S(q) \frac{1}{M} + 2B_{2}c + o(c^{2}))$

High sensitivity: I 个 with <molar mass> of aggregates

Oligomers: S(q) #1

or

Large aggregates (qR >>1): S(q) ~q ^{-Df}

Turbidity : the simplest determination of concentration of aggregates ?

Validation required: no evolution with time & C_{init}

I27 domain of human cardiac Titin amorphous $\beta\text{-aggregation}$ in TFE:water

M. Borgia JACS 2013, 135, 6456

Case of large, solid-like & dispersed aggregates Interface-driven aggregation

1) ADSORPTION OF ANTIBODIES AT THE INTERFACE

Shaking IgG solution produces aggregates

2) INTERFACIAL NUCLEATION OF AGGREGATES

Role of interface ?

3) RELEASE OF AGGREGATES IN THE SOLUTION UPON MECHANICAL PERTURBATION

Role of shearing ?

Interface-driven aggregation of IgG

Fluorescence microscopy (RITC-Ab staining)

- 200-1000 nm diameter
- 12-14 nm thickness

S. Rudiuk, Soft Matter, 2012, 8, 2651

Surface-driven aggregation

Generation of interfacial stress in mAb solutions

needle cross the interface at each rotation

- 1. aggregation detected by SLS/DLS vs nb of full rotation
- 2. References = no needle or needle always in solution

S. Rudiuk, Soft Matter, 2012, 8, 2651

intensité de lumière diffusée

Light-scattering intensity , normalisation of aggregation rate

Hypothesis: intensity reflects the nb of particles (Ragg >> 1/q and internal structure fixed)

Similar resuts with human polyclonal, and monoclonal IgG 1,5 g/L

S. Rudiuk, Soft Matter, 2012, 8, 2651

Destabilization by interfacial stress studied by LS

line it is a stars in such a descustion

No effec of IgG concentration

rotation 65 h 64 rpm

Effec of amphiphilic additives

= efficacy driven by adsorption rate of surfactant

Surfac > Tw80 > TTAB > FCHOL > C12NO > LSNa

S. Rudiuk, Soft Matter, 2012, 8, 2651

Case 2: solution-born aggregates

Morbidelli et al., J Phys Chem 2012, 116, 7066

Roberts, C. J. et al. (2011). Int.J. Pharma. 418(2): 318

Amin et al Curr. Opinion Coll.Interf. Sci. 2014,19(5): 438-449

Internal mass distribution in clusters of IgG1

Morbidelli et al., J Phys Chem 2012, 116, 7066

M. Castellanos, Biophys J. 2015, 107, 469

Case of constant Df (tight bridging, no evolution of aggregate density with time)

- Intensity at fixed q vary in proportion to the amount of aggregated proteins

- Smoluchowski's random aggregation (kinetics of inter-cluster coagulation) one may neglect monomer accretion and impact of oligomers at long time scales

Wikipedia.org/particle aggregation

Single index of stability : W = Fuchs stability ratio

Determination of Fuchs stability ratio

(case 2a: Df does not evolve & cluster radius > R_{protein})

Smoluchowski's random aggregation (kinetics of inter-cluster coagulation) If one can neglect monomer accretion and role of oligomers :

Normalisation by $\tau = t/tc$

$$1/t_c = k_s^0. C_0 / W$$
 $k_s = \frac{k_s^0}{W} = \frac{4k_BT}{3\eta W}$

W = collision freq. / bridging freq.

Morbidelli et al., J Phys Chem 2012, 116, 7066

		vv				
	25 °C	30 °C	35 °C	37 °C	39 °C	45 °C
pH 3.0 and 0.15 M Na ₂ SO ₄ at various terr	peratures 1.7×10^{10}	2.5×10^{9}	5.1×10^{8}	3.3×10^{8}	1.7×10^{8}	4.3×10^{7}
		NaH_2PO_4	NaCl	Na ₂ S	SO ₄	NaNO ₃
pH 3.0 and 37 $^{\circ}\text{C}$, with 0.15 M solutions of various salts		6.3×10^{9}	2.5×10^{9}	3.3 ×	10 ⁸	2.2×10^{8}

Determination of Fuchs stability ratio (case 2b: measurements at short time scales, oligomerisation)

Diffusion limited: no lag time, ks ~CO & determination of <u>effective</u> Fuchs ratio (W* may combine rate of oligomerization between activated/non activated species)

Activation limited + quasi steady state: ks = rate of activation

W F Reed et al. Anal Biochem 2013

Limit of characterisation: conditions of slow clustering, artefacts or chaotic aggregation?

Sampling of 1% of the total volume (30μ L):

- Aggregates may form and sedimentate?
- -Role of dust and impurities, vibrations, nature of cell surfaces ?
- -Lag time = rare event of nucleation ?

W F Reed et al. Anal Biochem 2013

Limit : chaperon efficiency vs effective Fuchs stability ratio?

(measurements with protein: additive complexes)

N. Martin et al, Biomacromolecules 2014, 15, 2952.

Phosphate buffer 20 mM pH 6.8

Complementary characterisations by AF4: (mixed complexes with stabilizing agents)

AF4 : decoupling Mw & size from signal

evidence for species of Mw < 300 kDa, ... unknown stoechiometry oflgG:polymer complexes distinguish IgG aggregation routes (e.g. gradual growth vs absence of oligomers) not amenable to fast kinetics

Toward specific readout: two-photon FCS

Evolution of the autocorrelation function

Autocorrelation function

Size/stoichiometry of polymer: IgG-FITC complexes

aggregation

slow aggregation rate stabilization of oligomers

protection stabilization of monomers

protection stabilization of monomers

Other applications:

evidencing reversible associations (surfactants) Assessement of chemical refolding

summary SAXS/SANS

What can be quantified ?

characteristic time of growth
master curves Rh vs t , check models
amount of aggregates in specific cases

✓ Size of primary clusters, preservation of native-like shape

energy barrier / binding well amplitude (solubility vs stability)

What are the limits:

ENSEMBLE characterisation = average features

- Question of sensitivity to molar % of clusters, or non-native structures
- models based on spherical averaging

Access to SAXS instruments (SOLEIL, ESRF) & cost

no distinct signal from non-protein particles (except SANS)

Acknowledgements

French Agence Nationale pour la Recherche

SANOFI

Supports:

> DIM Cnano

NanoSciences

(ANR)

Drazen Zanchi

Bruno Frka Petesic (post-doc)

Nicolas Martin (PhD) E. Marie (CR CNRS)

Fabrice Dalier (PhD)

Collaborations:

- L. Jullien (ENS Paris)
- D. Boquet (CEA Saclay)
- M. Desmadril (Univ. Orsay)
- P. Dubin (Amherst, USA)
- F. Winnik (Montreal, Canada)
- S. Huille (Sanofi)