

Devenir des protéines dans un système modèle de digestion simulée assisté par spectrométrie de masse

Institut Charles VIOLLETTE:

1: Equipe ProBioGEM, Université Lille1, Villeneuve d'Ascq et

2: Equipe QSA, Université d'Artois, Lens.

3: CUMA, Faculté de Pharmacie, Lille.
4: Inserm U1011, « Récepteurs nucléaires, maladies cardiovasculaires et diabète », Lille

Christophe FLAHAUT², Juliette CARON¹, Dorothée DOMENGER¹, Mostafa KOUACH³, Véronique TOUCHE⁴, Sophie LESTAVEL⁴, Jean-François GOOSSENS³, Pascal DHULSTER¹, Rozenn RAVALLEC¹ et **Benoit CUDENNEC**¹

Gastrointestinal digestion

1883

"Shall I refuse my dinner because I do not fully understand the process of digestion?"

Oliver Heaviside (1850-1925)

• Partial hydrolysis by pepsin (Stomach)

• proteases (trypsin, chymotrypsin, carboxypeptidases) and microorganisms peptidases (*small intestine lumen*)

• brush border membrane peptidase (*microvilli of epithelial cells*)

Free amino acids
+
Various molecular
weight peptides with
potential bioactivities
Peptidome

• Sources and roles of bioactive peptides

Sources of bioactive peptides

3

Animals All proteins Plants

 \rightarrow Cow-milk proteins

benefit / harmful

Health –promoting roles of bioactive peptides

• Hemoglobin (Hb) as a potential source of bioactive peptides ?

Hb ($\alpha 2/\beta 2$): a model protein

Bovine hemoglobin (Hb)

Meat production food chain

4

Hoorfar, J., et al., eds. *Food chain integrity: A holistic approach to food traceability, safety, quality and authenticity.* **2011,** Elsevier; **Bah, C. S. F**. *et al. Compr. Rev. Food Sci. Food Saf.* **2013**, *12*, 314–331.; **Ofori, J., Hsieh, Y.**, In *Food Additive*. In Tech. **2012**, pp. 230–256.

1

5

- Development of an *in vitro* human digestion model to study protein digestion
- Characterization of peptidomes (GI digestion-derived peptides)

2

 Protein digestion and energy homeostasis: impact of generated peptides on intestinal hormones

Source: NCBI

Material and Methods

• Hemoglobin (Hb): a highly digestible protein

7

Results - Low resolution approach

Normal bore C18 HPLC-MALDI-MS (off-line)

(8)

REALCAT plate-form, Univ Lille 1

Results - Low resolution approach

Peptide heterogeneity (HPLC-MALDI-MS)

9

Ion parent error tolerance **30 ppm** and fragment mass error tolerance **0.5 Da**.

e.g. : gastric fraction

317 matching peptides (based on MS-data)

 \rightarrow sequence coverage (MS) = 100 %

19 peptides unambiguously
identified by MS/MS
→ sequence coverage (MS/MS) = 77 %

339 matching peptides (based on MS-data)
→ sequence coverage (MS) = 100 %

26 peptides unambigously identified by MS/MS

 \rightarrow sequence coverage (MS/MS) = 66 %

Results - High resolution approach

• nanoLC-ESI-HR-MS/MS

(10)

e.g. : intestinal fraction

Peptide heterogeneity(nanoLC-ESI-HR-MS/MS)

(11)

e.g. : intestinal fraction

GI digestion-resistant sequences

Institut regional de recherche Charles Viollette

Ion parent error tolerance 10 ppm and fragment mass error tolerance 0.2 Da.

Results - The GI digestion-resistant sequences

HB_B: full sequence

MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKVKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKL

Charles Viollette

1

(13)

- Development of an *in vitro* human digestion model to study protein digestion
- Characterization of peptidomes (GI digestion-derived peptides)

2

• Protein digestion and energy homeostasis: impact of generated peptides on intestinal hormones

Source: NCBI

Energy Homeostasis:

14

Energy expenditure *vs* caloric intake: **need to ensure a balance**

Regulation mechanisms

Long term - adiposity signal: To maintain body weight « adiposity negative feedback » (Leptin)

Short term - satiation signal: (gut hormones, gastric distension)

Charles Viollette

(15)

• Cholecystokinin (CCK)

Produced by I cells (duodenum) in response to lipids and proteins.

Promotes **satiation**: increase gastric secretion, decrease gastric emptying, induces satiety feeling by vagal afferents

• Glucagon-like Peptide 1 (GLP-1)

Produced by L cells (ileum and colon) One of the proglucagon products Promotes satiation by various pathways Incretin: stimulates glucose-dependant insulin secretion

GLP-1 inactivation by dipeptidyl peptidase IV (**DPP-IV**). Only 10-20% plasmatic GLP-1 remains

Background - Intestinal hormones

• Dipeptidyl peptidase 4 (DPP-IV)

DPP-IV rapidly degrades GLP-1 \rightarrow decrease in plasma

DPP-IV inhibition \rightarrow indirect increase of GLP-1 activity \rightarrow indirect impact on food intake

DDP-IV - GLP-1:

(16)

Inhibiting DPP-IV extends GLP-1 incretin activity New target for type-2 diabetes therapy

Ex: Gliptins (e.g. Vidagliptin and saxagliptin)

→ Dietary proteins: promising sources as "natural" DPP-IV inhibitors

Experimental design

(17)

• Hormones secretion

Significant increase of both CCK and GLP-1 secretion in presence of intestinal samples

 \rightarrow Beneficial effect of **intestinal enzymes** on peptide potential bioactivity

Results - Intestinal hormone regulation

19

Intestinal hydrolysate (I4) significantly induces both CCK and proglucagon gene expression

Results - DPP-IV activity inhibition

DPP-IV activity assay

(20)

Cell extract

 DPP-IV activity inhibition of Hb digests In vitro colorimetric assays

Intestinal DPP-IV inhibition activity is enhanced during GI digestion

Final intestinal hydrolysate: best bioactivity like for intestinal hormone

- ----> Physiological relevance, same peptides involved?
 - --> Need to identify resistant active sequences

Results - peptide purification

(21)

Peptides contained in F4 both stimulate GLP-1 secretion and inhibit DPP-IV activity

Results - peptide purification

• Peptide identification and passage across intestinal wall

23

HB_A: full sequence																																			
VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGH															GΑ	٨K																			
141		amino acids																																	
1	2	2 3 4 5			6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
v	L	s	А	А	D	к	G	N	v	к	А	А	w	G	к	v	G	G	н	А	А	Е	Y	G	А	Е	А	L	Е	R	м	F	L	s	F
11	13	20	21	23	23	A 4	24	25	25	24	34	33	33	37	36	49	49	49		47	47	47	42	39	办	39	36	34	33	33	33	37	45	43	41
E																	1	r holice																	
Ŀ						t													α- 	elic	e				t										
		L																			L														
					L													_						L											
		Pr	L	Sequence						Mass (Da)												L													
		ADKGNV						602.3024													L														
HBA BOVIN							ADKGNVK						730.3973												L										
HBA_BOVIN							SA ADKGNV						760.3715												L										
	HBA_BOVIN							SA ADKGNV KA						959.5035											L										
HBA_BOVIN							DLHAH						591.28												L										
HBA_BOVIN							SDLHAH K							806.4035											L										
HBB_BOVIN							SDLHAH							678.3085											L										
HBA_BOVIN							DLSHGSAQ							813.3617											L										
HBA_BOVIN							KAAVT							488.2958											L										
	HB	A_BC		M	١N	РК			602.2846													L													
	HB	A_BC		SLDK							461.24											L													
	HB	A_BC	1	330.19													L																		
	HB	A_BC		VD	PV	'N			542.27													L													
	HBA_BOVIN							VGGHAAE						639.2976																					
	HBA_BOVIN						YGAE						438.175																						
	HBA_BOVIN							AE	A			509.2122																							
																																.:		÷.,	
	HB	B_BC	DVI	N			AN	VS	Т							49	0.2	38	7																
HBB_BOVIN							LT/	٩E	ΞK							68	9.3	59	6																

Conclusion and Perspectives

(24)

- \rightarrow Significant increase of both GLP-1 secretion and proglucagon gene expression
- → Inhibition of DPP-IV activity
- \rightarrow Extending GLP-1 actions (food intake regulation and incretin effect)

Hemoglobin peptidomes

(25)

- More than **700 sequences unambiguously identified** in gastric and intestinal peptidomes
- Specific cleaveages sites identified
- Resistant sequences identified recurent patterns
- These recurring patterns were made of amino acids that could be potential preferential cleavage sites with regard to enzyme specificity.
- No particular link between enzyme resistivity and isoelectric point or hydrophobicity index has been found out so far.
- Peptide conformations could prevent or slower enzyme activity. Secondary structure implicated.

Thank you for your attention !

Benoit Cudennec

Université de Lille 2 de santé

Centre Universitaire de Mesures et d'Analyses (CUMA) → Faculté de Pharmacie

> Mostafa Kouach Jean-François Goossenns

Véronique Touche Sophie Lestavel RÉGION NORD PAS DE CALAIS

Grant from the Conseil Régional du Nord-Pas de Calais.