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Following the fast evolution of microfluidics and nanotechnology, the elaboration of efficient enzyme immobilization processes is becoming of great 
interest for the development of new and original analytical tools or microreactors Recently, cold plasma polymerization of 1,1,3,3,tetramethyldisiloxane 
(TMDSO) has been successfully used for the simple fabrication of microchannels [1]. In the context of BioMEMS manufacturing, we present a fast, 
innovative, and biocompatible method for the rapid fabrication of bioactive coatings using this plasma polymerized 1,1,3,3,tetramethyldisiloxane 
(ppTMDS) as carrier matrix. Using β-galactosidase and pepsine as enzymes, we aim to develop a one- or two-steps immobilization procedure in order to 
fabricate a bio-functionnal layer where the enzymes are expected to be entrapped into the polymer matrix while preserving their native structure and 
their activity. 

Two distinct enzyme physical immobilization methodologies

- a one-step  procedure for which enzyme is in   solution with the 
TMDSO  monomer

- a two-step procedure for which the enzyme is adsorbed on the 
surface (aluminium or silicium) before its exposition to the flux

ResultsResultsResultsResults

Cold plasma technology allows fast immobilization of enzyme while retaining 
their bioactivity after several assays. The results reveal the feasibility of this 
physical non-conventional immobilization process. Further investigations and 
optimizations of the technological process will certainly enable the 
development of new biofunctional coatings for specific applications . 
Integration of this technology in microsystems fits into this context [1-3].
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Variable

- Deposition order of 
constituents
- Deposition duration
⇒⇒⇒⇒ Polymer thickness

Characterization

- Enzyme activity
- Stability
- Reproducibility

Techniques used

- FTIR (Chemical surface state)
- GBX Digidrop (Contact angle)
- Microscopie MEB (Thickness)

- Nanoscope/AFM (Surface topography)

Influence of deposited enzyme support nature
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Surface Topography by AFM

Agregates of 
β-Gal

Polymer re-organization
during the contact with

β-Gal
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• Polymer thickness ↑⇔ Better retention of β-Gal
• Diffusional limitations 
• No uniformity of polymer thickness
• Compromise between Thickness / Quantity of 
adsorbed enzyme / Enzyme activity

Direct influence on the nature of the 
support on the deposit 

and the activity of the enzyme
Activity loss of only 23% after 8 

washes (thickness=200nm)

Influence of deposited enzyme support nature
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