

LpHera[®]

colloque ENZINOV :

Enzymes Innovations Industries

27 et 28 octobre 2014

Sylvain Laperche – Strategic Account Manager

Rethink Tomorrow

Outline

- Novozymes in brief
- Novozymes sustainability and goals
- Starch industry as an example
- Alpha amylase history
- Refinery processes
- How does Novozymes develop new enzyme product
- LpHera[®] plant trial results
- Summary

Novozymes in brief

- Danish biotech-based company.
- World leader in enzymes and microorganisms.
- More than 6,000 employees globally.
- More than 500 products for many different industries sold in 130 countries.
- 2013 sales: more than \$ 2.1 BUSD.

Novozymes strives for sustainability

Novozymes in the Dow Jones sustainability indexes (DJSI):

- Included in DJSI Biotechnology sector since 2000
- Sector leader 2000-2007 and 2009-2012
- 'Gold Class' rating in 2010-2013 in Sustainable Asset Management (SAM) Sustainability Yearbook

ROBECOSAM Sustainability Award Gold Class 2013

Decoupling use of resources from growth

- Enzymes can increase efficiency and yield of a wide range of processes in our society
- With enzymes we can "produce more with less" and contribute to the decoupling of economic growth and use of natural resources

Less chemicals used, significant savings

Across industries our products help reduce CO₂

Essential enzymes for starch processing

Liquefaction	• Liquefying α -amylases
Saccharification	Saccharifying amylases Glucoamylase Pullulanase Acidic a-amylase
Speciality syrups and dextrins	 β-amylase CGTase Maltogenic α-amylase

$\begin{array}{c} \alpha \text{-amylase} \\ \text{development history} \end{array}$

Enzyme	Introduced	Issue addressed	Operating Parameters
	Frankrig (en la contraction d'Albana		
Termamyl L (<i>B. licheniformis</i>)	1973	Heat-stability	pH 6.2, Ca-addition and inactivation required
Termamyl S (<i>B. stearothermophilus</i>)	1986 (fuel alcohol)	Specific activity	pH 6.0, Ca-addition and inactivation required
Termamyl LS (mixture of L and S)	1987	Sediments	pH 6.0, Ca-addition a nd inactivation required
Termamyl LC (<i>B. lich</i> . hybrid-variant)	1998	Ca-addition and pH	pH 5.6, inactivation required
Termamyl SC (<i>B. stearo</i> . variant)	1998 (fuel alcohol)	Viscosity	pH 5.6, inactivation required
Termamyl Supra (mixture of LC and SC)	1998	Specific activity	pH 5.6, inactivation required
Liquozyme X	2002	Product specificity	pH 5.6, no inactivation required
Liquozyme Supra	2003	Product specificity, viscosity	pH 5.6, no inactivation required
LpHera®	2014	Liquefaction cost savings	pH 4.5 to 5.0

Starch liquefaction processes

Enzyme development Multiple stages

Protein Engineering (PE) approaches Tailoring nature's product

Engineered amylases Cut further from branches for higher dextrose no

Performance Demonstrated improvements at lower pH's

LpHera[®] shows excellent DE performance at low pH where conventional alpha-amylases do not.

Caustic savings

6% caustic flow rate (liter/min @ 2.38 vs. 1.33)

Plant trial results Syrup conductivity reduction

The data indicates that conductivity is lowered, thus reducing IX cost.

 Sacc sample conductivity (438 vs. 379) IX feed conductivity (330 vs. 299)

Dextrose output increased Consistently seen in lab and in full-scale tests

■ LpHera[®]
■ Liquozyme[®] Supra 2.2X

Lab scale data. Production scale data might be different

LpHera[®] offers a range of benefits From liquefaction and beyond

NOVOZYMES[®] Rethink Tomorrow

In summary...

LpHera[®] alpha amylase:

- Drops liquefaction pH to 4.8-5.0, while conventional liquefaction with conventional amylases are done at pH 5.5-5.8.
- Saves customer plant chemicals.
- Boosts dextrose levels.
- Potentially reduces enzyme usages.
- Has potential to provide other process savings such as energy, water, and wastewater treatment etc.
- Has demonstrated performance in full-scale testing.
- LpHera[®] launches a whole new era of low pH liquefaction.

Contact information: Sylvain Laperche

Novozymes Switzerland AG Neumattweg 16 4243 Dittingen Switzerland Phone: +41 617656514 Mobile: +41 794110025 E-mail: Syvl@novozymes.com Web:

www.novozymes.com

Jhank you