

PRÉLÈVEMENT DE L'AIR PAR TECHNOLOGIE CYCLONIQUE : OUTIL EXISTANT ET ÉTUDE DE CAS

M. Romain Verollet

Head of product management

BERTIN TECHNOLOGIES IN LIFE SCIENCES

- ▶ Precellys® Homogenizers for biological sample preparation
 - A full range of systems and consumables to prepare any type of sample in less than 1 min with high reproducibility

- Coriolis ® bio air samplers for indoor and outdoor controls
 - Bio air samplers based on airborne particles transfer into a liquid to go beyond traditional methods

- > Sterilwave® medical waste management solution
 - Based on microwave validated technology, on-site solution for bio-hazardous waste sterilization without effluent

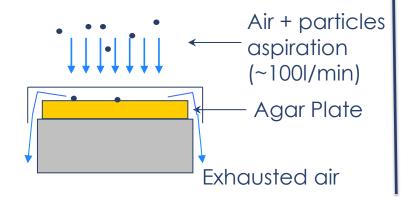
10 years of wet cyclone technology implementation

 Validation of a new method for pollen and allergen detection

 Portable air sampler for airborne pathogens detection.

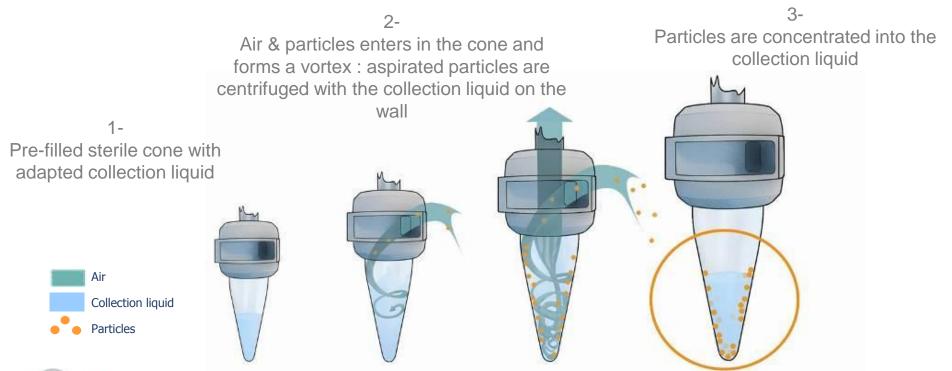
▶ Lab equipment – since 2009

 Microbial air sampler for indoor and outdoor air bio-contamination.


CURRENT AIRBORNE CONTAMINATION CONTROL

▷ Passive: Settle plate exposed max 4h

> Active: Impaction is the reference


Limitation of traditional technologies

- Information only on cultivable flora (what can grow on the nutritive agar)
- Long time to results (incubation step for growth) = several days (2 to 14)
- Limited volume of air collected (1m³)
- Short collection time (10 min)
- Air flow rate limited (to avoid the stress of the microorganisms) (~100 L/min)
- Saturation of the collection media in case of charged environments

ALTERNATIVE SOLUTION: CORIOLIS® TECHNOLOGY

- Patented cyclonic technology concentrating particles from 0.5 to 20μm into a sterile liquid collection media
- ▷ Captures and concentrates all airborne particles (bacteria, fungi, spores, viruses, pollens, allergens, endotoxins...)

WET CYCLONE COLLECTION ADVANTAGES

High flow rate

Representative air sampling (10 lpm vs 300 lpm)

Liquid sample output (10 mL)

- No saturation of the liquid sample
- Compatible with qPCR
- Compatible with ELISA
- Compatible with Titration

The Coriolis® micro gives access to more information than traditional methods

Long time monitoring (up to 6 hours)

- Concentration of the target in the collection liquid (generally sampling of 30 min)
- Unpredictable pollution event (for area monitoring)

CORIOLIS® MICRO PRODUCT

www.coriolis-airsampler.com

Designed for clean rooms, hospital and indoor air control

- High air flow rate: 100 to 300 L/min
- Light: 3 kg
- Collect viable, non cultivable and total flora, pollens, viruses...
- Easy decontamination (single use consumable, H202 decontamination)
- Battery operated
- Long time monitoring option (up to 6 hours)

CASE STUDY: IMPLEMENTATION OF BIOLOGICAL BEACONS

▷ Topic:

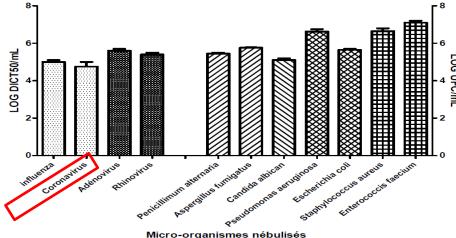
- ALBEDO Project 2012-2015
- Evaluation of sampling device with field biological analysis incorporated
- Target: aspergillus fumigatus

▷ Sampling site

Outside composition site

magnetic beads magnisense

- Translating manual to automatic analysis requires development
- Define the pathogen target



CASE STUDY: CHARACTERIZATION OF BIOLOGICAL FILTER EFFICIENCY

▷ Topic:

- Efficiency evaluation of indoor air decontamination system
- Nebulization chamber in BSL3 laboratory to simulate different in situ conditions

> Sampling site

- Air chamber: Suction of total volume of chamber with the Coriolis® micro with different conditions according to nature of microorganisms (collection media and time/flow rate)

- Collection of various pathogens
- Enable efficiency results of MERS
- Quantify respiratory viruses in air samples with specific RT-qPCR molecular procedures

CASE STUDY: GLUTEN IN THE AIR IN A FOOD PROCESSING

Sampling parameters	[Gluten] (mg of gluten/kg of liquid collection)	[Gluten] (mg of gluten/m³ of air)	Results
Control (distilled water)	<5 ppm	-	OK
A1-300L/min-20 min Machines stopped	<5 ppm	< 0,075 mg de gluten/6000L of air < 12,5 µg de gluten/m3 of air	- Low gluten contamination
A1-300L/min-10 min Machines stopped	<5 ppm	< 0,075 mg de gluten/3000L of air < 25 μg de gluten/m3 d'air	
A1-300L/min-20 min Production time	<5 ppm	< 0,075 mg de gluten/6000L of air < 12,5 µg de gluten/m3 of air	Low gluten contamination
A1-300L/min-10 min Production time	8 ppm	0,12 mg de gluten/3000L of air 40 µg de gluten/m3 of air	Increase of the level of gluten during the production

Sampling parameters	[Gluten] (mg of gluten/kg of liquid collection)	[Gluten] (mg of gluten/m³ of air)	Results
A2-300L/min-20 min Production time	35 ppm	0,525 mg de gluten/6000L of air 87,5 µg de gluten/m3 of air	Detection of gluten at a high concentration -> the production of gluten-free products close to this area is not possible
A2-300L/min-10 min Production time	54 ppm	0,81 mg de gluten/3000L of air 270 μg de gluten/m3 of air	
	44 ppm	0,66 mg de gluten/3000L of air 220 µg de gluten/m3 of air	
A2-200L/min-5 min Production time	18 ppm	270 μg de gluten/m3 d'air	

 Threat of contamination of gluten-free food by air (FDA regulation: 20ppm in food)

▷ Sampling sites

- A1: This area has been emptied out of all products containing gluten
- A2: Raw materials containing gluten are continuously used in this area.

 Thanks to its high flow rate, Coriolis Micro is a valuable tool for the collection of gluten even in a low contaminated environment.

CASE STUDY: STUDIES ABOUT THE DETECTION AND QUANTIFICATION OF BIOAEROSOLS WITHIN AND IN THE VICINITY OF PIG AND POULTRY BARNS

Contact: Jochen Schulz

Ahmed, Schulz, Hartung (2013): Air samplings in a Campylobacter jejuni positive laying hen flock. Annals of Agricultural and Environmental Medicine 20: 16-20

Topic:

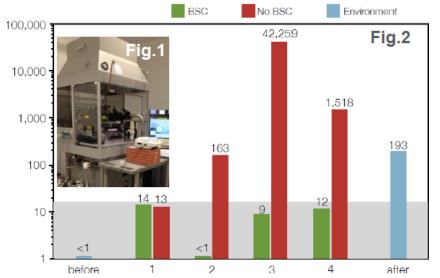
- The air of laying hen houses can contain high concentrations of airborne bacteria including zoonotic pathogens.
- The numbers of these bacteria can be influenced by the efficiency of the chosen sampling method.
- sampling aerobic mesophilic bacteria in a Campylobacter jejuni (airborne C. jejuni is suggested to be a potential health risk when it is swallowed, Wilson 2004)

▷ Sampling methods

AGI-30 Impinger and the Coriolis®µ

 The Coriolis µ Air Sampler showed higher bacteria concentrations than the AGI-30 impinger. The differences were highly significant

CASE STUDY: POTENTIAL AIR CONTAMINATION FROM CYTOMETERS



Cytometers without and with Bio Safety Cabinet (BSC)

Bead concentration (beads per m3) in "operator safety zone" under different operation conditions,

- Operator protection from aerosols, potentially carrying bio hazardous sample constituents (e.g. HIV), generated during cell sorting experiments
- In failure mode, high amounts of aerosol are produced because of (partial) obstruction of the "nozzle" of the cytometers

> Sampling site: in front of the cytometer

- Exp. 1: no operation (= background)
- Exp. 2: normal operation
- Exp. 3: failure mode
- Exp. 4: 30 seconds after failure mode
- Exp. 5: 2 meters away from cytometer

> Conclusions

 The results of this preliminary study clearly indicate the efficiency of providing operator safety by running jet-in-air flow cytometric cell sorters inside a BSC.

BERTIN TECHNOLOGIES

Romain Verollet
Head of Product Management Life Science

E.MAIL

Romain.verollet@bertin.fr

PHONE

+33 1 39 30 61 18

HEAD OFFICE

Parc d'Activités du Pas du Lac 10 bis avenue Ampère 78180 Montigny-le-Bretonneux FRANCE